326 research outputs found

    The Protection, Designation and Management of Cultural Routes: A Case Study of the Tea & Horse Road in China

    Get PDF
    Cultural routes are a relatively new, and much discussed concept in heritage designation and management. The extent to which this concept provides an effective theoretical framework for management of diverse sites, monuments, and landscapes, encompassing multiple stakeholders and values, is under debate. The research explores the so-called Tea & Horse Road (THR), which stretched from southwestern China to the South Asian subcontinent. It is an intriguing example of a historic network of interactions, combining multidimensional issues of protection, designation, and management, within a challenging contemporary social and political context. Using literature reviews, case studies, semi-structured interviews, and field investigations, the thesis focuses on the THR within Yunnan Province in China. The selected case study was divided into three categories: productive regions, transfer regions and consuming regions, in order to both articulate the assorted THR heritage, and to explore relevant crucial issues: the nature of the physical remains; their integrity and authenticity; the potential and impacts of tourism; local, regional and state-based values; and the prospective management, protection and designation of these areas. The research concludes that introducing the concept of cultural routes enables these multifaceted sites and landscapes to be integrated within a wider systematic framework, which offers possible approaches to top-down preservation and management of the THR. However, the research also reveals the tensions between cultural route and cultural landscape approaches, with the latter far easier to implement at a local/regional level. More broadly, it also raises questions about the implementation of cultural routes as a nomination strategy when dealing with diverse heritage resources, landscapes and communities

    3D-Printed Artificial Microfish

    Get PDF
    Hydrogel microfish featuring biomimetic structures, locomotive capabilities, and functionalized nanoparticles are engineered using a rapid 3D printing platform: microscale continuous ­optical printing (μCOP). The 3D-printed ­microfish exhibit chemically powered and magnetically guided propulsion, as well as highly efficient detoxification capabilities that highlight the technical versatility of this platform for engineering advanced functional microswimmers for diverse biomedical applications

    A Robotic Visual Grasping Design: Rethinking Convolution Neural Network with High-Resolutions

    Full text link
    High-resolution representations are important for vision-based robotic grasping problems. Existing works generally encode the input images into low-resolution representations via sub-networks and then recover high-resolution representations. This will lose spatial information, and errors introduced by the decoder will be more serious when multiple types of objects are considered or objects are far away from the camera. To address these issues, we revisit the design paradigm of CNN for robotic perception tasks. We demonstrate that using parallel branches as opposed to serial stacked convolutional layers will be a more powerful design for robotic visual grasping tasks. In particular, guidelines of neural network design are provided for robotic perception tasks, e.g., high-resolution representation and lightweight design, which respond to the challenges in different manipulation scenarios. We then develop a novel grasping visual architecture referred to as HRG-Net, a parallel-branch structure that always maintains a high-resolution representation and repeatedly exchanges information across resolutions. Extensive experiments validate that these two designs can effectively enhance the accuracy of visual-based grasping and accelerate network training. We show a series of comparative experiments in real physical environments at Youtube: https://youtu.be/Jhlsp-xzHFY

    Lightweight Neural Path Planning

    Full text link
    Learning-based path planning is becoming a promising robot navigation methodology due to its adaptability to various environments. However, the expensive computing and storage associated with networks impose significant challenges for their deployment on low-cost robots. Motivated by this practical challenge, we develop a lightweight neural path planning architecture with a dual input network and a hybrid sampler for resource-constrained robotic systems. Our architecture is designed with efficient task feature extraction and fusion modules to translate the given planning instance into a guidance map. The hybrid sampler is then applied to restrict the planning within the prospective regions indicated by the guide map. To enable the network training, we further construct a publicly available dataset with various successful planning instances. Numerical simulations and physical experiments demonstrate that, compared with baseline approaches, our approach has nearly an order of magnitude fewer model size and five times lower computational while achieving promising performance. Besides, our approach can also accelerate the planning convergence process with fewer planning iterations compared to sample-based methods.Comment: 8 page

    TODE-Trans: Transparent Object Depth Estimation with Transformer

    Full text link
    Transparent objects are widely used in industrial automation and daily life. However, robust visual recognition and perception of transparent objects have always been a major challenge. Currently, most commercial-grade depth cameras are still not good at sensing the surfaces of transparent objects due to the refraction and reflection of light. In this work, we present a transformer-based transparent object depth estimation approach from a single RGB-D input. We observe that the global characteristics of the transformer make it easier to extract contextual information to perform depth estimation of transparent areas. In addition, to better enhance the fine-grained features, a feature fusion module (FFM) is designed to assist coherent prediction. Our empirical evidence demonstrates that our model delivers significant improvements in recent popular datasets, e.g., 25% gain on RMSE and 21% gain on REL compared to previous state-of-the-art convolutional-based counterparts in ClearGrasp dataset. Extensive results show that our transformer-based model enables better aggregation of the object's RGB and inaccurate depth information to obtain a better depth representation. Our code and the pre-trained model will be available at https://github.com/yuchendoudou/TODE.Comment: Submitted to ICRA202

    FaithLM: Towards Faithful Explanations for Large Language Models

    Full text link
    Large Language Models (LLMs) have become proficient in addressing complex tasks by leveraging their extensive internal knowledge and reasoning capabilities. However, the black-box nature of these models complicates the task of explaining their decision-making processes. While recent advancements demonstrate the potential of leveraging LLMs to self-explain their predictions through natural language (NL) explanations, their explanations may not accurately reflect the LLMs' decision-making process due to a lack of fidelity optimization on the derived explanations. Measuring the fidelity of NL explanations is a challenging issue, as it is difficult to manipulate the input context to mask the semantics of these explanations. To this end, we introduce FaithLM to explain the decision of LLMs with NL explanations. Specifically, FaithLM designs a method for evaluating the fidelity of NL explanations by incorporating the contrary explanations to the query process. Moreover, FaithLM conducts an iterative process to improve the fidelity of derived explanations. Experiment results on three datasets from multiple domains demonstrate that FaithLM can significantly improve the fidelity of derived explanations, which also provides a better alignment with the ground-truth explanations

    Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model

    Full text link
    With the rapid growth in model size, fine-tuning the large pre-trained language model has become increasingly difficult due to its extensive memory usage. Previous works usually focus on reducing the number of trainable parameters in the network. While the model parameters do contribute to memory usage, the primary memory bottleneck during training arises from storing feature maps, also known as activations, as they are crucial for gradient calculation. Notably, neural networks are usually trained using stochastic gradient descent. We argue that in stochastic optimization, models can handle noisy gradients as long as the gradient estimator is unbiased with reasonable variance. Following this motivation, we propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance, which only requires storing the sub-sampled activations for calculating the gradient. Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones. By replacing the linear operation with our approximated one in transformers, we can achieve up to 2.7×\times peak memory reduction with almost no accuracy drop and enables up to 6.4×6.4\times larger batch size. Under the same hardware, WTA-CRS enables better down-streaming task performance by applying larger models and/or faster training speed with larger batch sizes

    BAMBOO: a predictive and transferable machine learning force field framework for liquid electrolyte development

    Full text link
    Despite the widespread applications of machine learning force field (MLFF) on solids and small molecules, there is a notable gap in applying MLFF to complex liquid electrolytes. In this work, we introduce BAMBOO (ByteDance AI Molecular Simulation Booster), a novel framework for molecular dynamics (MD) simulations, with a demonstration of its capabilities in the context of liquid electrolytes for lithium batteries. We design a physics-inspired graph equivariant transformer architecture as the backbone of BAMBOO to learn from quantum mechanical simulations. Additionally, we pioneer an ensemble knowledge distillation approach and apply it on MLFFs to improve the stability of MD simulations. Finally, we propose the density alignment algorithm to align BAMBOO with experimental measurements. BAMBOO demonstrates state-of-the-art accuracy in predicting key electrolyte properties such as density, viscosity, and ionic conductivity across various solvents and salt combinations. Our current model, trained on more than 15 chemical species, achieves the average density error of 0.01 g/cm3^3 on various compositions compared with experimental data. Moreover, our model demonstrates transferability to molecules not included in the quantum mechanical dataset. We envision this work as paving the way to a "universal MLFF" capable of simulating properties of common organic liquids

    An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT

    Full text link
    The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians, and it is typically written by radiologists based on the 'Findings' section. However, writing numerous impressions can be laborious and error-prone for radiologists. Although recent studies have achieved promising results in automatic impression generation using large-scale medical text data for pre-training and fine-tuning pre-trained language models, such models often require substantial amounts of medical text data and have poor generalization performance. While large language models (LLMs) like ChatGPT have shown strong generalization capabilities and performance, their performance in specific domains, such as radiology, remains under-investigated and potentially limited. To address this limitation, we propose ImpressionGPT, which leverages the in-context learning capability of LLMs by constructing dynamic contexts using domain-specific, individualized data. This dynamic prompt approach enables the model to learn contextual knowledge from semantically similar examples from existing data. Additionally, we design an iterative optimization algorithm that performs automatic evaluation on the generated impression results and composes the corresponding instruction prompts to further optimize the model. The proposed ImpressionGPT model achieves state-of-the-art performance on both MIMIC-CXR and OpenI datasets without requiring additional training data or fine-tuning the LLMs. This work presents a paradigm for localizing LLMs that can be applied in a wide range of similar application scenarios, bridging the gap between general-purpose LLMs and the specific language processing needs of various domains.Comment: Change to the published version. "ImpressionGPT" has been removed from the titl
    corecore