21 research outputs found

    Shear Stress Affects Biofilm Structure and Consequently Current Generation of Bioanode in Microbial Electrochemical Systems (MESs)

    Get PDF
    Shear stress is an important factor that affects the formation and structure of anode biofilms, which are strongly related to the extracellular electron transfer phenomena and bioelectric performance of bioanodes. Here, we show that using nitrogen sparging to induce shear stress during anode biofilm formation increases the linear sweep voltammetry peak current density of the mature anode biofilm from 2.37 ± 0.15 to 4.05 ± 0.25 A/m2. Electrochemical impedance spectroscopy results revealed that the shear-stress-enriched anode biofilm had a low charge transfer resistance of 46.34 Ω compared to that of the unperturbed enriched anode biofilm (72.2 Ω). Confocal laser scanning microscopy observations showed that the shear-stress-enriched biofilms were entirely viable, whereas the unperturbed enriched anode biofilm consisted of a live outer layer covering a dead inner-core layer. Based on biomass and community analyses, the shear-stress-enriched biofilm had four times the biofilm density (136.0 vs. 27.50 μg DNA/cm3) and twice the relative abundance of Geobacteraceae (over 80 vs. 40%) in comparison with those of the unperturbed enriched anode biofilm. These results show that applying high shear stress during anode biofilm enrichment can result in an entirely viable and dense biofilm with a high relative abundance of exoelectrogens and, consequently, better performance

    Analysis of datum-instability effect on calculated results of data from Longmen Mountain regional gravity network

    Get PDF
    A statistical correlation method is used to study the effect of instability of the calculation datum (used in traditional method of indirect adjustment) on calculated gravity results, using data recorded by Long-men Mountain regional gravity network during 1996 – 2007. The result shows that when this effect is corrected, anomalous gravity changes before the 2008 Wenchuan Ms8.0 earthquake become obvious and characteristically distinctive. Thus the datum-stability problem must be considered when processing and analyzing data recorded by a regional gravity network

    Characteristics of gravity fields in the Jinggu M6.6 earthquake

    Get PDF
    Based on the study of high-precision gravity data obtained from recent studies and the regional gravity network for Yunnan province, a variation in the regional gravity field was identified before the occurrence of the Yunnan Jinggu M6. 6 earthquake

    Joint inversion of gravity and seismic data along a profile across the seismogenic fault of 2010 Yushu Ms7.1 earthquake

    No full text
    Yushu Ms7.1 earthquake occurred on the Ganzi-Yushu fault zone, across which we carried out a joint relative-gravity and seismic-reflection survey, and then performed a gravity inversion constrained by the seismic-reflection result. Based on the data of complete Bouguer gravity anomaly and seismic reflection, we obtained a layered interface structure in deep crust down to Moho. Our study showed that the inversion could reveal the interfaces of strata along the survey profile and the directions of regional faults in two-dimension. From the characteristics of the observed topography of the Moho basement, we tentatively confirmed that the uplift of eastern edge of Qinghai-Tibet plateau was caused by the subduction of the Indian plate

    Gravity inversion of deep-crust and mantle interfaces in the Three Gorges area

    Get PDF
    To better understand the heterogeneity of deep-crust and mantle interfaces in the region of the Three Gorges, China, we used the Parker-Oldenburg iterative inversion method to invert existing Bouguer gravity data from the Three Gorges area (1 : 500000), a new gravity map of the Three Gorges Dam (1 : 200000), and the results of deep seismic soundings. The inversion results show a Moho depth of 42 km between Badong and Zigui and the depth of the B2 lower-crustal interface beneath the Jianghan Plain and surrounding areas at 21–25 km. The morphology of crustal interfaces and the surface geology present an overpass structure. The mid-crust beneath the Three Gorges Dam is approximately 9 km thick, which is the thinnest in the Three Gorges area and may be related to the shallow low-density body near the Huangling anticline. The upper crust is seismogenic, and there is a close relationship between seismicity and the deep-crust and mantle interfaces. For example, the M5. 1 Zigui earthquake occurred where the gradients of the Moho and the B2 interface are the steepest, showing that deep structure has a very important effect on regional seismicity

    Sensitivity Analysis and Experimental Verification of Bolt Support Parameters Based on Orthogonal Experiment

    No full text
    This paper presents a unified supporting parameter optimization procedure for the coupled bolt-rock systems by using the orthogonal experimental methods. Convergence of surrounding rock surface and deformations in the rock are taken as the objective functions for the stability of the surrounding rock of the roadway. The key support parameters of the bolt are considered as input variables. The simulation software FLAC3D is employed to develop the mechanical model for the coupled bolt-rock system and the objective functions of the coupled system are therefore obtained in the software. Combining the variance and multivariate linear regression analysis, an approach is derived to investigate the sensitivity of the support parameters to the objective functions. The corresponding support parameters are then optimized. The 15106 working of a practical mine in Yangquan is taken as an example. According to the similar simulation theory, corresponding simulation experiments are performed. Thus, the proposed method is validated and its robust performance for optimization of supporting parameters of the bolt is also demonstrated. The method provides a theoretical basis for the determination of bolt support parameters for mining roadway in a fully mechanized mining face

    Recent gravity changes in China Mainland

    Get PDF
    Based on results of the mobile gravity measurements of the Crustal Movement Observation Network of China and Digital Earthquake Observation Network of China, this paper shows the pattern of temporal gravity changes in China mainland on a time scale of 2 – 3 years since 1998, and gives an analysis of the patterns. The result shows that the temporal gravity changes basically reflect the current mass movement and occurrence of strong earthquakes

    Gravity anomaly before the Leshan M5.0 earthquake?

    Get PDF
    The North–South Seismic Belt was analyzed using gravity observation data from 2011 to 2015, and the nontidal analysis results show that there was a nonlinear gravity change at both the Chengdu and Guza seismostations one month before the Leshan M5.0 earthquake

    Estimating Moho basement and faults using gravity inversion in Yushu-earthquake area, China

    Get PDF
    A gravity survey was conducted one month after the 2010 Yushu earthquake in the epicenter area. The cross-fault survey line was 500 km long, from Langqian county to Qingshuihe county, in a transition zone between Bayan Har block and Qiangtang block, in an area of high elevation, large undulating terrain, and complex geological features. An interpretation of the data was carried out together with other kinds of data, such as seismic exploration and magnetic exploration. The result shows that gravity is sensitive to fault boundary; the geologic structure of the region is complex at middle and upper depths, and the density profile reveals an eastward-pushing fault movement

    Dynamic changes of gravity fields before and after the 2008 Wenchuan earthquake (Ms8.0)

    No full text
    The pattern evolution and dynamic mechanism of the dynamic changes of regional gravity fields occurring before and after the Wenchuan Ms8.0 earthquake are analyzed, based on five epochs of 1998–2007 mobile gravity data from the middle-south section of the north–south seismic belt, and two epochs of field research data collected after the 2008 Wenchuan earthquake in combination with GPS data, leveling observations, and geotectonic environment data. The regional dynamic gravity changes demonstrate the effects of the eastward flow of solid matter in the Qinghai-Tibetan plateau and the preparation of the 2008 Wenchuan earthquake (2–10 yr). The two most meaningful gravity indicators of the Wenchuan earthquake preparation are the positive (increasing) gravity changes occurring over many years in the southwest epicenter and the large-scale gradient zone of gravity variation, with the cumulative difference between the two sides of the gradient zone of gravity exceeding 200 μGal. The positive gravity changes may facilitate a constant energy accumulation and the gradient belt may support seismic shear breakage. Overall, the gravity changes associated with the earthquake preparation indicate a pattern of accelerating increase-decelerating increase-earthquake occurrence. The Songpan-Ganzi block generally displays a negative gravity change, providing evidence for a local upwarping of the deep crust-mantle and an interior expansion of the deep crust attributable to high temperatures. The viewpoint is consistent with the dilatant mechanism for earthquake preparation
    corecore