4,021 research outputs found

    Zero Modes of Matter Fields on Scalar Flat Thick Branes

    Full text link
    Zero modes of various matters with spin 0, 1 and 1/2 on a class of scalar flat thick branes are discussed in this paper. We show that scalar field with spin 0 is localized on all thick branes without additional condition, while spin 1 vector field is not localized. In addition, for spin 1/2 fermionic field, the zero mode is localized on the branes under certain conditions.Comment: 11 pages,no figure

    Scalar field in cosmology: Potential for isotropization and inflation

    Full text link
    The important role of scalar field in cosmology was noticed by a number of authors. Due to the fact that the scalar field possesses zero spin, it was basically considered in isotropic cosmological models. If considered in an anisotropic model, the linear scalar field does not lead to isotropization of expansion process. One needs to introduce scalar field with nonlinear potential for the isotropization process to take place. In this paper the general form of scalar field potentials leading to the asymptotic isotropization in case of Bianchi type-I cosmological model, and inflationary regime in case of isotropic space-time is obtained. In doing so we solved both direct and inverse problem, where by direct problem we mean to find metric functions and scalar field for the given potential, whereas, the inverse problem means to find the potential and scalar field for the given metric function. The scalar field potentials leading to the inflation and isotropization were found both for harmonic and proper synchronic time.Comment: 10 page

    Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person Re-identification

    Get PDF
    © 2020, Springer Nature Switzerland AG. Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem. Due to the large intra-class variations and cross-modality discrepancy with large amount of sample noise, it is difficult to learn discriminative part features. Existing VI-ReID methods instead tend to learn global representations, which have limited discriminability and weak robustness to noisy images. In this paper, we propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID. We propose an intra-modality weighted-part attention module to extract discriminative part-aggregated features, by imposing the domain knowledge on the part relationship mining. To enhance robustness against noisy samples, we introduce cross-modality graph structured attention to reinforce the representation with the contextual relations across the two modalities. We also develop a parameter-free dynamic dual aggregation learning strategy to adaptively integrate the two components in a progressive joint training manner. Extensive experiments demonstrate that DDAG outperforms the state-of-the-art methods under various settings

    Distributed phase-covariant cloning with atomic ensembles via quantum Zeno dynamics

    Full text link
    We propose an interesting scheme for distributed orbital state quantum cloning with atomic ensembles based on the quantum Zeno dynamics. These atomic ensembles which consist of identical three-level atoms are trapped in distant cavities connected by a single-mode integrated optical star coupler. These qubits can be manipulated through appropriate modulation of the coupling constants between atomic ensemble and classical field, and the cavity decay can be largely suppressed as the number of atoms in the ensemble qubits increases. The fidelity of each cloned qubit can be obtained with analytic result. The present scheme provides a new way to construct the quantum communication network.Comment: 5 pages, 4 figure

    The lifetime of B_c-meson and some relevant problems

    Full text link
    The lifetime of the B_c-meson is estimated with consistent considerations on all of the heavy mesons (B0,B±,Bs,D0,D±DsB^0, B^\pm, B_s, D^0, D^\pm D_s) and the double heavy meson B_c. In the estimate, the framework, where the non-spectator effects for nonleptonic decays are taken into account properly, is adopted, and the parameters needed to be fixed are treated carefully and determined by fitting the available data. The bound-state effects in it are also considered. We find that in decays of the meson B_c, the QCD correction terms of the penguin diagrams and the main component terms c_1O_1, c_2O_2 of the effective interaction Lagrangian have direct interference that causes an enhancement about 3 ~ 4% in the total width of the B_c meson.Comment: 27 pages, 0 figur

    LHC String Phenomenology

    Get PDF
    We argue that it is possible to address the deeper LHC Inverse Problem, to gain insight into the underlying theory from LHC signatures of new physics. We propose a technique which may allow us to distinguish among, and favor or disfavor, various classes of underlying theoretical constructions using (assumed) new physics signals at the LHC. We think that this can be done with limited data (510fb1)(5-10 fb^{-1}), and improved with more data. This is because of two reasons -- a) it is possible in many cases to reliably go from (semi)realistic microscopic string construction to the space of experimental observables, say, LHC signatures. b) The patterns of signatures at the LHC are sensitive to the structure of the underlying theoretical constructions. We illustrate our approach by analyzing two promising classes of string compactifications along with six other string-motivated constructions. Even though these constructions are not complete, they illustrate the point we want to emphasize. We think that using this technique effectively over time can eventually help us to meaningfully connect experimental data to microscopic theory.Comment: 50 Pages, 13 Figures, 3 Tables, v2: minor changes, references adde

    Visualization of endogenous p27 and Ki67 reveals the importance of a c-Myc-driven metabolic switch in promoting survival of quiescent cancer cells

    Get PDF
    Rationale: Recurrent and metastatic cancers often undergo a period of dormancy, which is closely associated with cellular quiescence, a state whereby cells exit the cell cycle and are reversibly arrested in G0 phase. Curative cancer treatment thus requires therapies that either sustain the dormant state of quiescent cancer cells, or preferentially, eliminate them. However, the mechanisms responsible for the survival of quiescent cancer cells remain obscure. Methods: Dual genome-editing was carried out using a CRISPR/Cas9-based system to label endogenous p27 and Ki67 with the green and red fluorescent proteins EGFP and mCherry, respectively, in melanoma cells. Analysis of transcriptomes of isolated EGFP-p27highmCherry-Ki67low quiescent cells was conducted at bulk and single cell levels using RNA-sequencing. The extracellular acidification rate and oxygen consumption rate were measured to define metabolic phenotypes. SiRNA and inducible shRNA knockdown, chromatin immunoprecipitation and luciferase reporter assays were employed to elucidate mechanisms of the metabolic switch in quiescent cells. Results: Dual labelling of endogenous p27 and Ki67 with differentiable fluorescent probes allowed for visualization, isolation, and analysis of viable p27highKi67low quiescent cells. Paradoxically, the proto-oncoprotein c-Myc, which commonly drives malignant cell cycle progression, was expressed at relatively high levels in p27highKi67low quiescent cells and supported their survival through promoting mitochondrial oxidative phosphorylation (OXPHOS). In this context, c-Myc selectively transactivated genes encoding OXPHOS enzymes, including subunits of isocitric dehydrogenase 3 (IDH3), whereas its binding to cell cycle progression gene promoters was decreased in quiescent cells. Silencing of c-Myc or the catalytic subunit of IDH3, IDH3α, preferentially killed quiescent cells, recapitulating the effect of treatment with OXPHOS inhibitors. Conclusion: These results establish a rigorous experimental system for investigating cellular quiescence, uncover the high selectivity of c-Myc in activating OXPHOS genes in quiescent cells, and propose OXPHOS targeting as a potential therapeutic avenue to counter cancer cells in quiescence
    corecore