42 research outputs found

    Mesoscopic modelling of microbubble in liquid with finite density ratio of gas to liquid

    No full text
    A microbubble model is developed with the mesoscopic simulation tool, dissipative particle dynamics (DPD) and many-body dissipative particle dynamics (MDPD). Standard DPD particles are employed to represent bubble phase at low density, and MDPD particles are for the liquid phase. The microbubble can be stable in liquid, in contrast to the vacuum bubble model. Gas-liquid interface is well presented with density and pressure jumps. The density ratio of gas to liquid can be lower than 0.1 by increasing the cut-off radius of bubble particles. Oscillating behavior of the microbubble model is investigated and validated by comparing with the Rayleigh-Plesset equation. The current model shows correct dynamic response, and the fluctuating behavior is captured as well. The lower the density ratio of the microbubble model, the closer the oscillating frequency to that of continuum theory

    Identification of pyroptosis‐related clusters for prediction of overall survival and characterization of tumor microenvironment infiltration in laryngeal squamous cell carcinoma

    No full text
    Abstract Laryngeal squamous cell carcinoma (LSCC) accounts for one‐third of head and neck squamous carcinoma (HNSCC). Although improvements have been made in treatments, the prognosis of patients with LSCC is unsatisfactory. Pyroptosis creates an environment that inhibits tumor growth in various cancers, but pyroptosis regulation in the tumor immune microenvironment in LSCC remains little known. The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to collect clinical traits and gene expression data of LSCC patients. We present a systematic overview of the immune microenvironment of LSCC based on genetics and transcriptional profiles of pyroptosis‐related genes (PRGs) and divide 220 LSCC into three distinct PRGclusters. Based on the three survival‐related PRGs identified in Lasso‐penalized Cox regression, samples from the training and validation cohorts were divided into two discrete geneClusters. We construct a prognostic model based on Risk score, quantify pyroptosis level and link it with patient outcome. Furthermore, we verified the expression level of one prognostic gene Basic Leucine Zipper ATF‐Like Transcription Factor at the tissue level in the validation experiment. These findings reveal the crucial role of pyroptosis and can assist in predicting patient prognosis, guiding optimal treatment choices, and developing new immunotherapies for LSCC

    Stability and drag reduction in transient channel flow of fibre suspension

    No full text
    Drag reduction features in the transition regime of channel flow with fibre suspension were analyzed in terms of the linear stability theory. The modified stability equation was obtained based on the slender-body theory and natural closure approximation. Results of the stability analysis show attenuating effects of fibre additives to the flow instability. For the cases leading to transition, drag reduction rate increases with the characteristic parameter H of fibres. The mechanism of drag reduction by fibres is revealed through the variation of velocity profile and the decrease of wall shear stress. The theoretical results are qualitatively consistent with some typical experiments

    A fictitious domain method for particulate flows with heat transfer

    Get PDF
    The distributed-Lagrange-multiplier/fictitious-domain (DLM/FD) method of Glowinski et al. [R. Glowinski, T.-W. Pan, T.I. Hesla, D.D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiphase Flow 25 (1999) 755–794] is extended to deal with heat transfer in particulate flows in two dimensions. The Boussinesq approximation is employed for the coupling between the flow and temperature fields. The fluid-flow equations are solved with the finite-difference projection method on a half-staggered grid. In our operator splitting scheme, the Lagrange multipliers at the previous time level are kept in the fluid equations, and the new Lagrange multipliers for the rigid-body motion constraint and the Dirichlet temperature boundary condition are determined from the reduced saddle-point problem, whereas a very simple scheme based on the fully explicit computation of the Lagrange multiplier is proposed for the problem in which the solid heat conduction inside the particle boundary is also considered. Our code for the case of fixed temperature on the immersed boundary is verified by comparing favorably our results on the natural convection driven by a hot cylinder eccentrically placed in a square box and on the sedimentation of a cold circular particle in a vertical channel to the data in the literature. The code for the case of freely varying temperature on the boundaries of freely moving particles is applied to analyze the motion of a catalyst particle in a box and in particular the heat conductivities of nanofluids and sheared non-colloidal suspensions, respectively. Our preliminary computational results support the argument that the micro-heat-convection in the fluids is primarily responsible for the unusually high heat conductivity of nanofluids. It is shown that the Peclet number plays a negative role in the diffusion-related heat conductivity of a sheared non-colloidal suspension, whereas the Reynolds number does the opposite

    Automated Design Optimization of a Mono Tiltrotor in Hovering and Cruising States

    No full text
    A mono tiltrotor (MTR) design which combines concepts of a tiltrotor and coaxial rotor is presented. The aerodynamic modeling of the MTR based on blade element momentum theory (BEMT) is conducted, and the method is fully validated with previous experimental data. An automated optimization approach integrating BEMT modeling and optimization algorithms is developed. Parameters such as inter-rotor spacing, blade twist, taper ratio and aspect ratio are chosen as design variables. Single-objective (in hovering or in cruising state) optimizations and multi-objective (both in hovering and cruising states) optimizations are studied at preset design points; i.e., hovering trim and cruising trim. Two single-objective optimizations result in different sets of parameter selections according to the different design objectives. The multi-objective optimization is applied to obtain an identical and compromised selection of design parameters. An optimal point is chosen from the Pareto front of the multi-objective optimization. The optimized design has a better performance in terms of the figure of merit (FM) and propulsive efficiency, which are improved by 7.3% for FM and 13.4% for propulsive efficiency from the prototype, respectively. Further aerodynamic analysis confirmed that the optimized rotor has a much more uniform load distribution along the blade span, and therefore a better aerodynamic performance in both hovering and cruising states is achieved

    A parallel fictitious domain method for the interface-resolved simulation of particle-laden flows and its application to the turbulent channel flow

    No full text
    A parallel direct-forcing (DF) fictitious domain (FD) method for the simulation of particulate flows is reported in this paper. The parallel computing strategies for the solution of flow fields and particularly the distributed Lagrange multiplier are presented, and the high efficiency of the parallel code is demonstrated. The new code is then applied to study the effects of particle density (or particle inertia) on the turbulent channel flow. The results show that the large-scale vortices are weakened more severely, and the flow friction drag increases first and then reduces, as particle inertia is increased
    corecore