19,256 research outputs found
Bringing closure to microlensing mass measurement
Interferometers offer multiple methods for studying microlensing events and
determining the properties of the lenses. We investigate the study of
microlensing events with optical interferometers, focusing on narrow-angle
astrometry, visibility, and closure phase. After introducing the basics of
microlensing and interferometry, we derive expressions for the signals in each
of these three channels. For various forecasts of the instrumental performance,
we discuss which method provides the best means of measuring the lens angular
Einstein radius theta_E, a prerequisite for determining the lens mass. If the
upcoming generation of large-aperture, AO-corrected long baseline
interferometers (e.g. VLTI, Keck, OHANA) perform as well as expected, theta_E
may be determined with signal-to-noise greater than 10 for all bright events.
We estimate that roughly a dozen events per year will be sufficiciently bright
and have long enough durations to allow the measurement of the lens mass and
distance from the ground. We also consider the prospects for a VLTI survey of
all bright lensing events using a Fisher matrix analysis, and find that even
without individual masses, interesting constraints may be placed on the bulge
mass function, although large numbers of events would be required.Comment: 23 pages, aastex, submitted to Ap
Influence of vector interactions on the hadron-quark/gluon phase transition
The hadron-quark/gluon phase transition is studied in the two-phase model. As
a further study of our previous work, both the isoscalar and isovector vector
interactions are included in the Polyakov loop modified Nambu--Jona-Lasinio
model (PNJL) for the quark phase. The relevance of the exchange (Fock) terms is
stressed and suitably accounted for. The calculation shows that the isovector
vector interaction delays the phase transition to higher densities and the
range of the mixed phase correspondingly shrinks. Meanwhile the asymmetry
parameter of quark matter in the mixed phase decreases with the strengthening
of this interaction channel. This leads to some possible observation signals
being weakened, although still present. We show that these can be rather
general effects of a repulsion in the quark phase due to the symmetry energy.
This is also confirmed by a simpler calculation with the MIT--Bag model.
However, the asymmetry parameter of quark matter is slightly enhanced with the
inclusion of the isoscalar vector interaction, but the phase transition will be
moved to higher densities. The largest uncertainty on the phase transition lies
in the undetermined coupling constants of the vector interactions. In this
respect new data on the mixed phase obtained from Heavy Ion Collisions at
Intermediate Energies appear very important.Comment: submitted to Phys. Rev.
Entanglement entropy of the composite fermion non-Fermi liquid state
The so-called ``non-Fermi liquid'' behavior is very common in strongly
correlated systems. However, its operational definition in terms of ``what it
is not'' is a major obstacle against theoretical understanding of this
fascinating correlated state. Recently there has been much interest in
entanglement entropy as a theoretical tool to study non-Fermi liquids. So far
explicit calculations have been limited to models without direct experimental
realizations. Here we focus on a two dimensional electron fluid under magnetic
field and filling fraction , which is believed to be a non-Fermi
liquid state. Using the composite fermion (CF) wave-function which captures the
state very accurately, we compute the second R\'enyi entropy using
variational Monte-Carlo technique and an efficient parallel algorithm. We find
the entanglement entropy scales as with the length of the boundary
as it does for free fermions, albeit with a pre-factor twice that of the
free fermion. We contrast the results against theoretical conjectures and
discuss the implications of the results.Comment: 4+ page
The Palomar Testbed Interferometer
The Palomar Testbed Interferometer (PTI) is a long-baseline infrared
interferometer located at Palomar Observatory, California. It was built as a
testbed for interferometric techniques applicable to the Keck Interferometer.
First fringes were obtained in July 1995. PTI implements a dual-star
architecture, tracking two stars simultaneously for phase referencing and
narrow-angle astrometry. The three fixed 40-cm apertures can be combined
pair-wise to provide baselines to 110 m. The interferometer actively tracks the
white-light fringe using an array detector at 2.2 um and active delay lines
with a range of +/- 38 m. Laser metrology of the delay lines allows for servo
control, and laser metrology of the complete optical path enables narrow-angle
astrometric measurements. The instrument is highly automated, using a
multiprocessing computer system for instrument control and sequencing.Comment: ApJ in Press (Jan 99) Fig 1 available from
http://huey.jpl.nasa.gov/~bode/ptiPicture.html, revised duging copy edi
Probing non-Abelian statistics of Majorana fermions in ultracold atomic superfluid
We propose an experiment to directly probe the non-Abelian statistics of
Majorana fermions by braiding them in an s-wave superfluid of ultracold atoms.
We show different orders of braiding operations give orthogonal output states
that can be distinguished through Raman spectroscopy. Realization of Majorana
bound states in an s-wave superfluid requires strong spin-orbital coupling and
a controllable Zeeman field in the perpendicular direction. We present a simple
laser configuration to generate the artificial spin-orbital coupling and the
required Zeeman field in the dark state subspace.Comment: 4 pages; Add detailed discussion of feasibility of the scheme;add
ref
The PHASES Differential Astrometry Data Archive. I. Measurements and Description
The Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES)
monitored 51 sub-arcsecond binary systems to determine precision binary orbits,
study the geometries of triple and quadruple star systems, and discover
previously unknown faint astrometric companions as small as giant planets.
PHASES measurements made with the Palomar Testbed Interferometer (PTI) from
2002 until PTI ceased normal operations in late 2008 are presented. Infrared
differential photometry of several PHASES targets were measured with Keck
Adaptive Optics and are presented.Comment: 33 pages emulateapj, Accepted to A
Perceptual learning of dot pattern
Dot pattern is a type of pattern defined by specific spatial relationship among some dots. As a compensation for concrete and meaningful visual stimuli, meaningless dot pattern can be used as stimuli in learning tasks. We performed an experiment for exploring the perceptual learning process of dot pattern against random-dot background. Participants were required to learn two types of dot patterns (9-dot and 11-dot). They were assigned to two groups: participants in Group 1 learned 9-dot pattern first and 11-dot pattern later, while those in Group 2 learned 11-dot pattern first and 9-dot pattern later. The results showed that participants could acquire the spatial relationship of dot pattern through perceptual learning in relatively short learning time. In comparison with 9-dot pattern, learning time of 11-dot pattern was slightly longer and its accuracy rate lower, but there was significant positive transfer effect from 11-dot pattern learning to 9-dot learning
Bell Inequalities Classifying Bi-separable Three-qubit States
We present a set of Bell inequalities that gives rise to a finer
classification of the entanglement for tripartite systems. These inequalities
distinguish three possible bi-separable entanglements for three-qubit states.
The three Bell operators we employed constitute an external sphere of the
separable cube.Comment: 8 page
Masses, luminosities, and orbital coplanarities of the ” Orionis quadruple-star system from phases differential astrometry
ÎŒ Orionis was identified by spectroscopic studies as a quadruple-star system. Seventeen high-precision differential astrometry measurements of ÎŒ Ori have been collected by the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES). These show both the motion of the long-period binary orbit and short-period perturbations superimposed on that caused by each of the components in the long-period system being themselves binaries. The new measurements enable the orientations of the long-period binary and short-period subsystems to be determined. Recent theoretical work predicts the distribution of relative inclinations between inner and outer orbits of hierarchical systems to peak near 40 and 140 degrees. The degree of coplanarity of this complex system is determined, and the angle between the planes of the AâB and AaâAb orbits is found to be 136.7 ± 8.3 degrees, near the predicted distribution peak at 140 degrees; this result is discussed in the context of the handful of systems with established mutual inclinations. The system distance and masses for each component are obtained from a combined fit of the PHASES astrometry and archival radial velocity observations. The component masses have relative precisions of 5% (component Aa), 15% (Ab), and 1.4% (each of Ba and Bb). The median size of the minor axes of the uncertainty ellipses for the new measurements is 20 micro-arcseconds (ÎŒas). Updated orbits for ÎŽ Equulei, Îș Pegasi, and V819 Herculis are also presented
- âŠ