15,963 research outputs found

    Rate-dependent morphology of Li2O2 growth in Li-O2 batteries

    Full text link
    Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.Comment: 8 pages, 6 fig

    Neutrino mixing with broken S3S_3 symmetry

    Full text link
    We explore the consequences of assuming that the neutrino mass matrix is a linear combination of the matrices of a three dimensional representation of the group S3S_3 and that it has one zero mass eigenvalue. When implemented, these two assumptions allow us to express the transformation matrix relating the mass eigenstates to the flavor eigenstates in terms of a single parameter which we fit to the available data.Comment: Final version. Published in Phys. Rev. D 82, 033005 (2010

    Influence of vector interactions on the hadron-quark/gluon phase transition

    Full text link
    The hadron-quark/gluon phase transition is studied in the two-phase model. As a further study of our previous work, both the isoscalar and isovector vector interactions are included in the Polyakov loop modified Nambu--Jona-Lasinio model (PNJL) for the quark phase. The relevance of the exchange (Fock) terms is stressed and suitably accounted for. The calculation shows that the isovector vector interaction delays the phase transition to higher densities and the range of the mixed phase correspondingly shrinks. Meanwhile the asymmetry parameter of quark matter in the mixed phase decreases with the strengthening of this interaction channel. This leads to some possible observation signals being weakened, although still present. We show that these can be rather general effects of a repulsion in the quark phase due to the symmetry energy. This is also confirmed by a simpler calculation with the MIT--Bag model. However, the asymmetry parameter of quark matter is slightly enhanced with the inclusion of the isoscalar vector interaction, but the phase transition will be moved to higher densities. The largest uncertainty on the phase transition lies in the undetermined coupling constants of the vector interactions. In this respect new data on the mixed phase obtained from Heavy Ion Collisions at Intermediate Energies appear very important.Comment: submitted to Phys. Rev.

    Hadron-quark phase transition in asymmetric matter with dynamical quark masses

    Full text link
    The two-Equation of State (EoS) model is used to describe the hadron-quark phase transition in asymmetric matter formed at high density in heavy-ion collisions. For the quark phase, the three-flavor Nambu--Jona-Lasinio (NJL) effective theory is used to investigate the influence of dynamical quark mass effects on the phase transition. At variance to the MIT-Bag results, with fixed current quark masses, the main important effect of the chiral dynamics is the appearance of an End-Point for the coexistence zone. We show that a first order hadron-quark phase transition may take place in the region T=(50-80)MeV and \rho_B=(2-4)\rho_0, which is possible to be probed in the new planned facilities, such as FAIR at GSI-Darmstadt and NICA at JINR-Dubna. From isospin properties of the mixed phase somepossible signals are suggested. The importance of chiral symmetry and dynamical quark mass on the hadron-quark phase transition is stressed. The difficulty of an exact location of Critical-End-Point comes from its appearance in a region of competition between chiral symmetry breaking and confinement, where our knowledge of effective QCD theories is still rather uncertain.Comment: 13 pages, 16 figures (revtex

    A nonpolynomial Schroedinger equation for resonantly absorbing gratings

    Full text link
    We derive a nonlinear Schroedinger equation with a radical term, in the form of the square root of (1-|V|^2), as an asymptotic model of the optical medium built as a periodic set of thin layers of two-level atoms, resonantly interacting with the electromagnetic field and inducing the Bragg reflection. A family of bright solitons is found, which splits into stable and unstable parts, exactly obeying the Vakhitov-Kolokolov criterion. The soliton with the largest amplitude, which is |V| = 1, is found in an explicit analytical form. It is a "quasi-peakon", with a discontinuity of the third derivative at the center. Families of exact cnoidal waves, built as periodic chains of quasi-peakons, are found too. The ultimate solution belonging to the family of dark solitons, with the background level |V| = 1, is a dark compacton, also obtained in an explicit analytical form. Those bright solitons which are unstable destroy themselves (if perturbed) attaining the critical amplitude, |V| = 1. The dynamics of the wave field around this critical point is studied analytically, revealing a switch of the system into an unstable phase. Collisions between bright solitons are investigated too. The collisions between fast solitons are quasi-elastic, while slowly moving ones merge into breathers, which may persist or perish (in the latter case, also by attaining |V| = 1).Comment: Physical Review A, in pres

    Possible approach to improve sensitivity of a Michelson interferometer

    Full text link
    We propose a possible approach to achieve an 1/N sensitivity of Michelson interferometer by using a properly designed random phase modulation. Different from other approaches, the sensitivity improvement does not depend on increasing optical powers or utilizing the quantum properties of light. Moreover the requirements for optical losses and the quantum efficiencies of photodetection systems might be lower than the quantum approaches and the sensitivity improvement is frequency independent in all detection band.Comment: 8 pages, 3 figures, new versio

    Note on a new fundamental length scale ll instead of the Newtonian constant GG

    Full text link
    The newly proposed entropic gravity suggests gravity as an emergent force rather than a fundamental one. In this approach, the Newtonian constant GG does not play a fundamental role any more, and a new fundamental constant is required to replace its position. This request also arises from some philosophical considerations to contemplate the physical foundations for the unification of theories. We here consider the suggestion to derive GG from more fundamental quantities in the presence of a new fundamental length scale ll, which is suspected to originate from the structure of quantum space-time, and can be measured directly from Lorentz-violating observations. Our results are relevant to the fundamental understanding of physics, and more practically, of natural units, as well as explanations of experimental constraints in searching for Lorentz violation.Comment: 10 latex pages, final version for journal publicatio
    corecore