57 research outputs found

    Large-scale fabrication of ordered arrays of microcontainers and the restraint effect on growth of CuO nanowires

    Get PDF
    Technique has been developed to fabricate ordered arrays of microcontainers. We report that ordered microcontainer arrays of Cu can be fabricated on glass substrate by thin film deposition and self-assembly technology. In addition, CuO nanowires are found to grow only in the inner sides of microcontainers, which verifies the stress growth mechanism of CuO nanowires. High-resolution transmission electron microscopy study reveals that CuO nanowires grow along the [110] direction. Such structure may have potential application in micro-electron sources, which have the self-focused function

    Hfq Is a Global Regulator That Controls the Pathogenicity of Staphylococcus aureus

    Get PDF
    The Hfq protein is reported to be an RNA chaperone, which is involved in the stress response and the virulence of several pathogens. In E. coli, Hfq can mediate the interaction between some sRNAs and their target mRNAs. But it is controversial whether Hfq plays an important role in S. aureus. In this study, we found that the deletion of hfq gene in S. aureus 8325-4 can increase the surface carotenoid pigments. The hfq mutant was more resistant to oxidative stress but the pathogenicity of the mutant was reduced. We reveal that the Hfq protein can be detected only in some S. aureus strains. Using microarray and qRT-PCR, we identified 116 genes in the hfq mutant which had differential expression from the wild type, most of which are related to the phenotype and virulence of S. aureus. Among the 116 genes, 49 mRNAs can specifically bind Hfq protein, which indicates that Hfq also acts as an RNA binding protein in S. aureus. Our data suggest that Hfq protein of S. aureus is a multifunctional regulator involved in stress and virulence

    Screening of functional antidotes of RNA aptamers against bovine thrombin

    Get PDF
    AbstractA specific RNA aptamer (T705) against bovine thrombin had been obtained after seven rounds of SELEX (systematic evolution of ligands by exponential enrichment) selection from a random RNA library previously. In order to further investigate the relationship between the structure and function of this aptamer, three truncated RNA aptamers, T705a, T705b and T705c, were designed according to the secondary structure of T705 RNA. Our results showed that T705c keeping the precise stem–loop structure but lacking most of the stem region sequence of T705 could inhibit clot formation in vitro in the same way as its parental form. We also report here that single-stranded DNA (ssDNA) antisense oligonucleotides, c′ and c′-22, which were complementary to different portions of T705c could act as efficient antidotes reversing the inhibitory activity of T705. It is demonstrated for the first time that ssDNA antisense oligonucleotides are potential antidotes of RNA aptamers and this may be an effective, rapid strategy to find antidotes of RNA aptamers which would be of important usefulness in basic research and drug screening

    The Protective Antibodies Induced by a Novel Epitope of Human TNF-α Could Suppress the Development of Collagen-Induced Arthritis

    Get PDF
    Tumor necrosis factor alpha (TNF-α) is a major inflammatory mediator that exhibits actions leading to tissue destruction and hampering recovery from damage. At present, two antibodies against human TNF-α (hTNF-α) are available, which are widely used for the clinic treatment of certain inflammatory diseases. This work was undertaken to identify a novel functional epitope of hTNF-α. We performed screening peptide library against anti-hTNF-α antibodies, ELISA and competitive ELISA to obtain the epitope of hTNF-α. The key residues of the epitope were identified by means of combinatorial alanine scanning and site-specific mutagenesis. The N terminus (80–91 aa) of hTNF-α proved to be a novel epitope (YG1). The two amino acids of YG1, proline and valine, were identified as the key residues, which were important for hTNF-α biological function. Furthermore, the function of the epitope was addressed on an animal model of collagen-induced arthritis (CIA). CIA could be suppressed in an animal model by prevaccination with the derivative peptides of YG1. The antibodies of YG1 could also inhibit the cytotoxicity of hTNF-α. These results demonstrate that YG1 is a novel epitope associated with the biological function of hTNF-α and the antibodies against YG1 can inhibit the development of CIA in animal model, so it would be a potential target of new therapeutic antibodies

    Large-scale fabrication of ordered arrays of microcontainers and the restraint effect on growth of CuO nanowires

    No full text
    Abstract Technique has been developed to fabricate ordered arrays of microcontainers. We report that ordered microcontainer arrays of Cu can be fabricated on glass substrate by thin film deposition and self-assembly technology. In addition, CuO nanowires are found to grow only in the inner sides of microcontainers, which verifies the stress growth mechanism of CuO nanowires. High-resolution transmission electron microscopy study reveals that CuO nanowires grow along the [110] direction. Such structure may have potential application in micro-electron sources, which have the self-focused function.</p
    • …
    corecore