447 research outputs found
Successful corticosteroid-sparing effect of rituximab in the treatment of refractory idiopathic orbital inflammatory disease.
Idiopathic orbital inflammatory disease (IOID) is an idiopathic inflammatory process within the orbit that can result in permanent visual impairment. Although high-dose oral corticosteroids are currently the mainstay of therapy, their long-term usage can cause significant toxicity. We present a case of IOID that was successfully treated with the anti-CD20 monoclonal antibody rituximab following failed steroid sparing with conventional second-line immunosuppressive agents. © 2013 S. Karger AG, Basel
Dynamic update of shortest path tree in OSPF
2003-2004 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii
The unicellular green alga Chlamydomonas reinhardtii has emerged as a superb model species in plant biology. Although the alga is easily transformable, the low efficiency of transgene expression from the Chlamydomonas nuclear genome has severely hampered functional genomics research. For example, poor transgene expression is held responsible for the lack of sensitive reporter genes to monitor gene expression in vivo, analyze subcellular protein localization or study protein–protein interactions. Here, we have tested the luciferase from the marine copepod Gaussia princeps (G-Luc) for its suitability as a sensitive bioluminescent reporter of gene expression in Chlamydomonas. We show that a Gaussia luciferase gene variant, engineered to match the codon usage in the Chlamydomonas nuclear genome, serves as a highly sensitive reporter of gene expression from both constitutive and inducible algal promoters. Its bioluminescence signal intensity greatly surpasses previously developed reporters for Chlamydomonas nuclear gene expression and reaches values high enough for utilizing the reporter as a tool to monitor responses to environmental stresses in vivo and to conduct high-throughput screenings for signaling mutants in Chlamydomonas
Linear Estimation of Location and Scale Parameters Using Partial Maxima
Consider an i.i.d. sample X^*_1,X^*_2,...,X^*_n from a location-scale family,
and assume that the only available observations consist of the partial maxima
(or minima)sequence, X^*_{1:1},X^*_{2:2},...,X^*_{n:n}, where
X^*_{j:j}=max{X^*_1,...,X^*_j}. This kind of truncation appears in several
circumstances, including best performances in athletics events. In the case of
partial maxima, the form of the BLUEs (best linear unbiased estimators) is
quite similar to the form of the well-known Lloyd's (1952, Least-squares
estimation of location and scale parameters using order statistics, Biometrika,
vol. 39, pp. 88-95) BLUEs, based on (the sufficient sample of) order
statistics, but, in contrast to the classical case, their consistency is no
longer obvious. The present paper is mainly concerned with the scale parameter,
showing that the variance of the partial maxima BLUE is at most of order
O(1/log n), for a wide class of distributions.Comment: This article is devoted to the memory of my six-years-old, little
daughter, Dionyssia, who leaved us on August 25, 2010, at Cephalonia isl. (26
pages, to appear in Metrika
A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry
We present here a review of the fundamental topics of Hartree-Fock theory in
Quantum Chemistry. From the molecular Hamiltonian, using and discussing the
Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock
equations for the electronic problem. Special emphasis is placed in the most
relevant mathematical aspects of the theoretical derivation of the final
equations, as well as in the results regarding the existence and uniqueness of
their solutions. All Hartree-Fock versions with different spin restrictions are
systematically extracted from the general case, thus providing a unifying
framework. Then, the discretization of the one-electron orbitals space is
reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition
of the basic underlying concepts related to the construction and selection of
Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we
close the review with a section in which the most relevant modern developments
(specially those related to the design of linear-scaling methods) are commented
and linked to the issues discussed. The whole work is intentionally
introductory and rather self-contained, so that it may be useful for non
experts that aim to use quantum chemical methods in interdisciplinary
applications. Moreover, much material that is found scattered in the literature
has been put together here to facilitate comprehension and to serve as a handy
reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and
subeqn package
Characterizing genomic alterations in cancer by complementary functional associations.
Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes
RASSF1A–LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2
Genomic instability is a key hallmark of cancer leading to tumour heterogeneity and therapeutic resistance. BRCA2 has a fundamental role in error-free DNA repair but also sustains genome integrity by promoting RAD51 nucleofilament formation at stalled replication forks. CDK2 phosphorylates BRCA2 (pS3291-BRCA2) to limit stabilizing contacts with polymerized RAD51; however, how replication stress modulates CDK2 activity and whether loss of pS3291-BRCA2 regulation results in genomic instability of tumours are not known. Here we demonstrate that the Hippo pathway kinase LATS1 interacts with CDK2 in response to genotoxic stress to constrain pS3291-BRCA2 and support RAD51 nucleofilaments, thereby maintaining genomic fidelity during replication stalling. We also show that LATS1 forms part of an ATR-mediated response to replication stress that requires the tumour suppressor RASSF1A. Importantly, perturbation of the ATR–RASSF1A–LATS1 signalling axis leads to genomic defects associated with loss of BRCA2 function and contributes to genomic instability and ‘BRCA-ness’ in lung cancers
Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment
Peer reviewedPublisher PD
Quantum dynamics in strong fluctuating fields
A large number of multifaceted quantum transport processes in molecular
systems and physical nanosystems can be treated in terms of quantum relaxation
processes which couple to one or several fluctuating environments. A thermal
equilibrium environment can conveniently be modelled by a thermal bath of
harmonic oscillators. An archetype situation provides a two-state dissipative
quantum dynamics, commonly known under the label of a spin-boson dynamics. An
interesting and nontrivial physical situation emerges, however, when the
quantum dynamics evolves far away from thermal equilibrium. This occurs, for
example, when a charge transferring medium possesses nonequilibrium degrees of
freedom, or when a strong time-dependent control field is applied externally.
Accordingly, certain parameters of underlying quantum subsystem acquire
stochastic character. Herein, we review the general theoretical framework which
is based on the method of projector operators, yielding the quantum master
equations for systems that are exposed to strong external fields. This allows
one to investigate on a common basis the influence of nonequilibrium
fluctuations and periodic electrical fields on quantum transport processes.
Most importantly, such strong fluctuating fields induce a whole variety of
nonlinear and nonequilibrium phenomena. A characteristic feature of such
dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
Strategic and practical guidelines for successful structured illumination microscopy
Linear 2D- or 3D-structured illumination microscopy (SIM or3D-SIM, respectively) enables multicolor volumetric imaging of fixed and live specimens with subdiffraction resolution in all spatial dimensions. However, the reliance of SIM on algorithmic post-processing renders it particularly sensitive to artifacts that may reduce resolution, compromise data and its interpretations, and drain resources in terms of money and time spent. Here we present a protocol that allows users to generate high-quality SIM data while accounting and correcting for common artifacts. The protocol details preparation of calibration bead slides designed for SIM-based experiments, the acquisition of calibration data, the documentation of typically encountered SIM artifacts and corrective measures that should be taken to reduce them. It also includes a conceptual overview and checklist for experimental design and calibration decisions, and is applicable to any commercially available or custom platform. This protocol, plus accompanying guidelines, allows researchers from students to imaging professionals to create an optimal SIM imaging environment regardless of specimen type or structure of interest. The calibration sample preparation and system calibration protocol can be executed within 1-2 d
- …