4 research outputs found

    Associations of air pollution with all-cause dementia, Alzheimer’s disease, and vascular dementia: a prospective cohort study based on 437,932 participants from the UK biobank

    Get PDF
    ObjectiveTo prospectively assess whether air pollution, including PM2.5, PM10, and NOx, is associated with the risk of all-cause dementia, Alzheimer’s disease (AD), and vascular dementia, and to investigate the potential relationship between air pollution and genetic susceptibility in the development of AD.Methods and resultsOur study included 437,932 participants from the UK Biobank with a median follow-up period of over 10 years. Using a Cox proportional hazards model, we found that participants exposed to PM2.5 levels of ≥10 μg/m3 had a higher risk of developing all-cause dementia (HR = 1.1; 95% CI: 1.05–1.28; p < 0.05) compared to the group exposed to PM2.5 levels of <10 μg/m3. However, there was no significant association between PM10 levels of ≥15 μg/m3 and the risk of all-cause dementia, AD, or vascular dementia when compared to the group exposed to PM10 levels of <15 μg/m3. On the other hand, participants exposed to NOx levels of ≥50 μg/m3 had a significantly higher risk of all-cause dementia (HR = 1.14; 95% CI: 1.02–1.26; p < 0.05) and AD (HR = 1.26; 95% CI: 1.08–1.48; p < 0.05) compared to the group exposed to NOx levels of <50 μg/m3. Furthermore, we examined the combined effect of air pollution (PM2.5, PM10, and NOx) and Alzheimer’s disease genetic risk score (AD-GRS) on the development of AD using a Cox proportional hazards model. Among participants with a high AD-GRS, those exposed to NOx levels of ≥50 μg/m3 had a significantly higher risk of AD compared to those in the group exposed to NOx levels of <50 μg/m3 (HR = 1.36; 95% CI: 1.03–1.18; p < 0.05). Regardless of air pollutant levels (PM2.5, PM10, or NOx), participants with a high AD-GRS had a significantly increased risk of developing AD. Similar results were obtained when assessing multiple variables using inverse probability of treatment weighting (IPTW).ConclusionOur findings indicate that individuals living in areas with PM2.5 levels of ≥10 μg/m3 or NOx levels of ≥50 μg/m3 are at a higher risk of developing all-cause dementia. Moreover, individuals with a high AD-GRS demonstrated an increased risk of developing AD, particularly in the presence of NOx ≥ 50 μg/m3

    Triglyceride-glucose index as a valuable predictor for aged 65-years and above in critical delirium patients: evidence from a multi-center study

    No full text
    Abstract Background The triglyceride-glucose index (TyG), an established indicator of insulin resistance, is closely correlated with the prognosis of several metabolic disorders. This study aims to investigate the association between the TyG index and the incidence of critical delirium in patients aged 65 years and older. Methods We focused on evaluating patients aged 65 years and older diagnosed with critical delirium. Data were obtained from the Medical Information Database for Intensive Care (MIMIC-IV) and the eICU Collaborative Research Database (eICU-CRD). Multivariate logistic regression and restricted cubic spline (RCS) regression were used to determine the relationship between the TyG index and the risk of delirium. Results Participants aged 65 years and older were identified from the MIMIC-IV (n = 4,649) and eICU-CRD (n = 1,844) databases. Based on optimal thresholds derived from RCS regression, participants were divided into two cohorts: Q1 (< 8.912), Q2 (≥ 8.912). The logistic regression analysis showed a direct correlation between the TyG index and an increased risk of critical delirium among ICU patients aged 65 and older. These findings were validated in the eICU-CRD dataset, and sensitivity analysis further strengthened our conclusions. In addition, the subgroup analysis revealed certain differences. Conclusion This study highlights a clear, independent relationship between the TyG index and the risk of critical delirium in individuals aged 65 years and older, suggesting the importance of the TyG index as a reliable cardio-cerebrovascular metabolic marker for risk assessment and intervention

    Associations of screen-based sedentary activities with all cause dementia, Alzheimer’s disease, vascular dementia: a longitudinal study based on 462,524 participants from the UK Biobank

    No full text
    Abstract Background Current drug treatments for dementia aren't effective. Studying gene-environment interactions can help develop personalized early intervention strategies for Alzheimer's disease (AD). However, no studies have examined the relationship between screen-based sedentary activities and genetic susceptibility to AD risk, and further understanding of the causal relationship is also crucial. Methods This study included 462,524 participants from the UK Biobank with a follow-up of 13.6 years. Participants' screen-based sedentary activities time was categorized into three groups based on recorded time: ≥ 4 h/day, 2–3 h/day, and ≤ 1 h/day. Cox proportional risk models were used to analyze the association between computer use/TV viewing groups and the risk of all-cause dementia, AD and vascular dementia (VD). Generalized linear model (GLM) were used to examine the relationship between screen-based sedentary activities and brain structure. Bidirectional Mendelian randomization (MR) was used to validate the causal relationship between TV viewing and AD. Results Compared to TV viewing ≤ 1 h/day, 1)TV viewing 2–3 h/day was correlated with a higher risk of all-cause dementia (HR = 1.09, 95% CI:1.01–1.18, P < 0.05), and TV viewing ≥ 4 h/day was associated with a higher risk of all-cause dementia (HR = 1.29, 95% CI: 1.19–1.40, P < 0.001), AD (HR = 1.25, 95% CI:1.1–1.42, P < 0.001), and VD (HR = 1.24, 95% CI: 1.04–1.49, P < 0.05); 2) TV viewing ≥ 4 h/day was correlated with a higher AD risk at intermediate (HR = 1.34, 95% CI: 1.03–1.75, P < 0.001) and high AD genetic risk score (AD-GRS) (HR = 2.18, 95% CI: 1.65–2.87, P < 0.001);3) TV viewing 2–3 h/day [β = (-94.8), 95% CI: (-37.9) -(-151.7), P < 0.01] and TV viewing ≥ 4 h/day [β = (-92.94), 95% CI: (-17.42) -(-168.46), P < 0.05] were correlated with a less hippocampus volume. In addition, a causal effect of TV viewing times was observed on AD analyzed using MR Egger (OR = 5.618, 95%CI:1.502–21.013, P < 0.05). Conclusions There was a causal effect between TV viewing time and AD analyzed using bidirectional MR, and more TV viewing time exposure was correlated with a higher AD risk. Therefore, it is recommended that people with intermediate and high AD-GRS should control their TV viewing time to be less than 4 h/ day or even less than 1 h/day
    corecore