1 research outputs found

    Energy of general 4-dimensional stationary axisymmetric spacetime in the teleparallel geometry

    Get PDF
    The field equation with the cosmological constant term is derived and the energy of the general 4-dimensional stationary axisymmetric spacetime is studied in the context of the hamiltonian formulation of the teleparallel equivalent of general relativity (TEGR). We find that, by means of the integral form of the constraints equations of the formalism naturally without any restriction on the metric parameters, the energy for the asymptotically flat/de Sitter/Anti-de Sitter stationary spacetimes in the Boyer-Lindquist coordinate can be expressed as E=18π∫Sdθdϕ(sinθgθθ+gϕϕ−(1/grr)(∂gθθgϕϕ/∂r))E=\frac{1}{8\pi}\int_S d\theta d\phi(sin\theta \sqrt{g_{\theta\theta}}+\sqrt{g_{\phi\phi}}-(1/\sqrt{g_{rr}})(\partial{\sqrt{g_ {\theta\theta} g_{\phi\phi}}}/\partial r)). It is surprised to learn that the energy expression is relevant to the metric components grrg_{rr}, gθθg_{\theta\theta} and gϕϕg_{\phi\phi} only. As examples, by using this formula we calculate the energies of the Kerr-Newman (KN), Kerr-Newman Anti-de Sitter (KN-AdS), Kaluza-Klein, and Cveti\v{c}-Youm spacetimes.Comment: 12 page
    corecore