22 research outputs found

    MOLD-SHAPED, NANOFIBER SCAFFOLD-BASED CARTILAGE ENGINEERING USING HUMAN MESENCHYMAL STEM CELLS AND BIOREACTOR

    Get PDF
    Background Mesenchymal stem cell (MSC)-based tissue engineering is a promising future alternative to autologous cartilage grafting. This study evaluates the potential of using MSCs, seeded into electrospun, biodegradable polymeric nanofibrous scaffolds, to engineer cartilage with defined dimensions and shape, similar to grafts used for subcutaneous implantation in plastic and reconstructive surgery. Materials and methods Human bone marrow derived MSCs seeded onto nanofibrous scaffolds and placed in custom-designed molds were cultured for up to 42 days in bioreactors. Chondrogenesis was induced with either transforming growth factor-β1 (TGF-β1) alone or in combination with insulin-like growth factor-I (IGF-I). Results Constructs exhibited hyaline cartilage histology with desired thickness and shape as well as favorable tissue integrity and shape retention, suggesting the presence of elastic tissue. Time-dependent increase in cartilage matrix gene expression was seen in both types of culture; at Day 42, TGF-β1/IGF-I treated cultures showed higher collagen type II and aggrecan expression. Both culture conditions showed significant time-dependent increase in sulfated glycosaminoglycan and hydroxyproline contents. TGF-β1/IGF-I treated samples were significantly stiffer; with equilibrium compressive Young’s modulus values reaching 17 kPa by Day 42. Conclusions The successful ex vivo development of geometrically defined cartilaginous construct using customized molding suggests the potential of cell-based cartilage tissue for reconstructive surgery

    Sternal Repair with Bone Grafts Engineered from Amniotic Mesenchymal Stem Cells

    Get PDF
    Background We aimed at determining whether osseous grafts engineered from amniotic mesenchymal stem cells (aMSCs) could be employed in postnatal sternal repair. Methods Leporine aMSCs were isolated, identified, transfected with green fluorescent protein (GFP), expanded, and seeded onto biodegradable electrospun nanofibrous scaffolds (n=6). Constructs were dynamically maintained in an osteogenic medium and equally divided into two groups with respect to time in vitro, namely 14.6 or 33.9 weeks. They were then used to repair full thickness sternal defects spanning 2–3 intercostal spaces in allogeneic kits (n=6). Grafts were submitted to multiple analyses 2 months thereafter. Results Chest roentgenograms showed defect closure in all animals, confirmed at necropsy. Graft density as assessed by micro-CT scans increased significantly in vivo, yet there were no differences in mineralization by extracellular calcium measurements pre- and post-implantation. There was a borderline increase in alkaline phosphatase activity in vivo, suggesting ongoing graft remodeling. Histologically, implants contained GFP-positive cells and few mononuclear infiltrates. There were no differences between the two construct groups in any comparison. Conclusions Engineered osseous grafts derived from amniotic mesenchymal stem cells may become a viable alternative for sternal repair. The amniotic fluid can be a practical cell source for engineered chest wall reconstruction

    A Gingiva-Derived Mesenchymal Stem Cell-Laden Porcine Small Intestinal Submucosa Extracellular Matrix Construct Promotes Myomucosal Regeneration of the Tongue

    Get PDF
    In the oral cavity, the tongue is the anatomic subsite most commonly involved by invasive squamous cell carcinoma. Current treatment protocols often require significant tissue resection to achieve adequate negative margins and optimal local tumor control. Reconstruction of the tongue while preserving and/or restoring its critical vocal, chewing, and swallowing functions remains one of the major challenges in head and neck oncologic surgery. We investigated the in vitro feasibility of fabricating a novel combinatorial construct using porcine small intestinal submucosa extracellular matrix (SIS-ECM) and human gingiva-derived mesenchymal stem cells (GMSCs) as a GMSC/SIS-ECM tissue graft for the tongue reconstruction. We developed a rat model of critical-sized myomucosal defect of the tongue that allowed the testing of therapeutic effects of an acellular SIS-ECM construct versus a GMSC/SIS-ECM construct on repair and regeneration of the tongue defect. We showed that the GMSC/SIS-ECM construct engrafted at the host recipient site, promoted soft tissue healing, and regenerated the muscular layer, compared to the SIS-ECM alone or nontreated defect controls. Furthermore, our results revealed that transplantation of the GMSC/SIS-ECM construct significantly increased the expression of several myogenic transcriptional factors and simultaneously suppressed the expression of type I collagen at the wounded area of the tongue. These compelling findings suggest that, unlike the tongue contracture and fibrosis of the nontreated defect group, transplantation of the combinatorial GMSC/SIS-ECM constructs accelerates wound healing and muscle regeneration and maintains the overall tongue shape, possibly by both enhancing the function of endogenous skeletal progenitor cells and suppressing fibrosis. Together, our findings indicate that GMSC/SIS-ECM potentially served as a myomucosal graft for tongue reconstruction postsurgery of head and neck cancer. © Copyright 2017, Mary Ann Liebert, Inc

    Mesenchymal Stromal Cell-Derived Interleukin-6 Promotes Epithelial–Mesenchymal Transition and Acquisition of Epithelial Stem-Like Cell Properties in Ameloblastoma Epithelial Cells

    Get PDF
    pithelial–mesenchymal transition (EMT), a biological process associated with cancer stem-like or cancer-initiating cell formation, contributes to the invasiveness, metastasis, drug resistance, and recurrence of the malignant tumors; it remains to be determined whether similar processes contribute to the pathogenesis and progression of ameloblastoma (AM), a benign but locally invasive odontogenic neoplasm. Here, we demonstrated that EMT- and stem cell-related genes were expressed in the epithelial islands of the most common histologic variant subtype, the follicular AM. Our results revealed elevated interleukin (IL)-6 signals that were differentially expressed in the stromal compartment of the follicular AM. To explore the stromal effect on tumor pathogenesis, we isolated and characterized both mesenchymal stromal cells (AM-MSCs) and epithelial cells (AM-EpiCs) from follicular AM and demonstrated that, in in vitro culture, AM-MSCs secreted a significantly higher level of IL-6 as compared to the counterpart AM-EpiCs. Furthermore, both in vitro and in vivo studies revealed that exogenous and AM-MSC-derived IL-6 induced the expression of EMT- and stem cell-related genes in AM-EpiCs, whereas such effects were significantly abrogated either by a specific inhibitor of STAT3 or ERK1/2, or by knockdown of Slug gene expression. These findings suggest that AM-MSC-derived IL-6 promotes tumor-stem like cell formation by inducing EMT process in AM-EpiCs through STAT3 and ERK1/2-mediated signaling pathways, implying a role in the etiology and progression of the benign but locally invasive neoplasm. Stem Cells 2017;35:2083–2094. © 2017 AlphaMed Pres

    LGR5+ epithelial tumor stem-like cells generate a 3D-organoid model for ameloblastoma

    Get PDF
    Ameloblastoma (AM) is a benign but locally aggressive tumor with high recurrences. Currently, underlying pathophysiology remains elusive, and radical surgery remains the most definitive treatment with severe morbidities. We have recently reported that AM harbors a subpopulation of tumor epithelial stem-like cells (AM-EpiSCs). Herein, we explored whether LGR5+ epithelial cells in AM possess stem-like cell properties and their potential contribution to pathogenesis and recurrence of AM. We found that LGR5 and stem cell-related genes were co-expressed in a subpopulation of AM epithelial cells both in vivo and in vitro, which were enriched under 3D-spheroid culture. As compared to LGR5− counterparts, LGR5+ AM epithelial cells showed increased expression of various EMT- and stemness-related genes, and functionally, exhibited increased capacity to form 3D-spheroids and generate human tumor 3D organoids, which recapitulated the histopathologic features of distinct subtypes of solid AM, thus, contributing a useful human tumor platform for targeted therapeutic screening. Treatment with a selective BRAFV600E inhibitor, vemurafenib, unexpectedly enriched the subpopulation of LGR5+ AM-EpiSCs in tumor 3D organoids, which may have explained therapeutic resistances and recurrences. These findings suggest that LGR5+ AM-EpiSCs play a pivotal role in pathogenesis and progression of AM and targeted inhibition of both BRAF and LGR5 potentially serves a novel nonsurgical adjuvant therapeutic approach for this aggressively benign jaw tumor. © 2020, The Author(s)

    Human palatine tonsil: a new potential tissue source of multipotent mesenchymal progenitor cells

    Get PDF
    INTRODUCTION: Mesenchymal progenitor cells (MPCs) are multipotent progenitor cells in adult tissues, for example, bone marrow (BM). Current challenges of clinical application of BM-derived MPCs include donor site morbidity and pain as well as low cell yields associated with an age-related decrease in cell number and differentiation potential, underscoring the need to identify alternative sources of MPCs. Recently, MPC sources have diversified; examples include adipose, placenta, umbilicus, trabecular bone, cartilage, and synovial tissue. In the present work, we report the presence of MPCs in human tonsillar tissue. ----- METHODS: We performed comparative and quantitative analyses of BM-MPCs with a subpopulation of adherent cells isolated from this lymphoid tissue, termed tonsil-derived MPCs (T-MPCs). The expression of surface markers was assessed by fluorescent-activated cell sorting analysis. Differentiation potential of T-MPCs was analyzed histochemically and by reverse transcription-polymerase chain reaction for the expression of lineage-related marker genes. The immunosuppressive properties of MPCs were determined in vitro in mixed lymphocyte reactions. ----- RESULTS: Surface epitope analysis revealed that T-MPCs were negative for CD14, CD31, CD34, and CD45 expression and positive for CD29, CD44, CD90, and CD105 expression, a characteristic phenotype of BM-MPCs. Similar to BM-MPCs, T-MPCs could be induced to undergo adipogenic differentiation and, to a lesser extent, osteogenic and chondrogenic differentiation. T-MPCs did not express class II major histocompatibility (MHC) antigens, and in a similar but less pronounced manner compared with BM-MPCs, T-MPCs were immunosuppressive, inhibiting the proliferation of T cells stimulated by allogeneic T cells or by non-specific mitogenic stimuli via an indoleamine 2,3-dioxygenase-dependent mechanism. ----- CONCLUSION: Human palatine T-MPCs represent a new source of progenitor cells, potentially applicable for cell-based therapies

    Considerations in the evaluation and management of oral potentially malignant disorders during the COVID-19 pandemic

    Get PDF
    Aim: The COVID-19 pandemic has resulted in society experiencing unprecedented challenges for health care practitioners and facilities serving at the frontlines of this pandemic. With regard to oral cancer, there is a complete absence of literature regarding the long-term impact of pandemics on patients with oral potentially malignant disorders (OPMDs). The objective of this article is to put forth an institutional multidisciplinary approach for the evaluation and management of OPMDs. Methods: A multidisciplinary approach was put formalized within our institution to risk stratify patients based on need for in-person assessment vs telehealth assessment during the COVID-19 pandemic. Results: With judicious risk stratification of patients based on clinical features of their OPMD and with consideration of ongoing mitigation efforts and regional pandemic impact, providers are able to safely care for their patients. Conclusions: The COVID-19 pandemic has required health care practitioners to make novel decisions that are new to us with development of creative pathways of care that focused on patient safety, mitigation efforts, and clinical management of disease processes. The care of patients with OPMDs requires special considerations especially as patients at high risk for severe COVID-19 illness are also higher risk for the development of OPMDs. © 2020 Wiley Periodicals, Inc

    Virtual Surgical Planning and Piezoelectric Surgery in Tumor Extirpative Surgery Aimed at Inferior Alveolar Nerve Preservation

    No full text
    A myriad of extirpative surgical protocols for the management of benign tumors of the jaws have been presented in the literature. Through significant advancements in computer-aided design and computer-aided manufacturing (CAD/CAM) technology and surgical instrumentation, today surgeons have at their disposal robust technology-driven techniques that are aimed at improving surgical outcomes. Our goal is to investigate the benefits of implementing virtual surgical planning (VSP) in conjunction with piezoelectric surgery (PES) to ensure success while minimizing the risk of complications during extirpation of tumors of the mandible. This case report describes the successful extirpation of an ossifying fibroma of the mandible in an adult patient using both VSP and PES
    corecore