83 research outputs found

    Inconceivable Hypokalemia: A Case Report of Acute Severe Barium Chloride Poisoning

    Get PDF
    Barium is a heavy divalent alkaline earth metal that has been known as a muscle poison. Barium can cause human toxicity, which may lead to significant hypokalemia and have serious consequences. This paper reports a case of unprecedented barium intoxication in which the patient, who suffered from depression, swallowed at least 3.0 g barium chloride to commit suicide. On admission, the patient presented with nausea, vomiting, stomach burning feeling, dizziness, and weakness. Emergency biochemical testing showed that the patient was suffering from severe hypokalemia (K+ 1.7 mmol/L). His electrocardiogram (ECG) prompted atrioventricular blocking, ventricular tachycardia, prolongation of PR interval, ST segment depression with U waves, and T wave inversion. Intravenous potassium supplements were given immediately to correct hypokalemia and regular monitoring of vital signs and fluid balance was arranged. After all-out rescue of our hospital personnel, the condition of the patient is currently stable and he is gradually recovering. This case exemplifies the weaknesses of the management of toxic substances and the lack of mental health education for young people. We hope to get more attention for the supervision of toxic substances and the healthy development of young people

    Blockade to pathological remodeling of infarcted heart tissue using a porcupine antagonist

    Get PDF
    The secreted Wnt signaling molecules are essential to the coordination of cell-fate decision making in multicellular organisms. In adult animals, the secreted Wnt proteins are critical for tissue regeneration and frequently contribute to cancer. Small molecules that disable the Wnt acyltransferase Porcupine (Porcn) are candidate anticancer agents in clinical testing. Here we have systematically assessed the effects of the Porcn inhibitor (WNT-974) on the regeneration of several tissue types to identify potentially unwanted chemical effects that could limit the therapeutic utility of such agents. An unanticipated observation from these studies is proregenerative responses in heart muscle induced by systemic chemical suppression of Wnt signaling. Using in vitro cultures of several cell types found in the heart, we delineate the Wnt signaling apparatus supporting an antiregenerative transcriptional program that includes a subunit of the nonfibrillar collagen VI. Similar to observations seen in animals exposed to WNT-974, deletion of the collagen VI subunit, COL6A1, has been shown to decrease aberrant remodeling and fibrosis in infarcted heart tissue. We demonstrate that WNT-974 can improve the recovery of heart function after left anterior descending coronary artery ligation by mitigating adverse remodeling of infarcted tissue. Injured heart tissue exposed to WNT-974 exhibits decreased scarring and reduced Col6 production. Our findings support the development of Porcn inhibitors as antifibrotic agents that could be exploited to promote heart repair following injury

    Refined Semi-Supervised Modulation Classification: Integrating Consistency Regularization and Pseudo-Labeling Techniques

    No full text
    Automatic modulation classification (AMC) plays a crucial role in wireless communication by identifying the modulation scheme of received signals, bridging signal reception and demodulation. Its main challenge lies in performing accurate signal processing without prior information. While deep learning has been applied to AMC, its effectiveness largely depends on the availability of labeled samples. To address the scarcity of labeled data, we introduce a novel semi-supervised AMC approach combining consistency regularization and pseudo-labeling. This method capitalizes on the inherent data distribution of unlabeled data to supplement the limited labeled data. Our approach involves a dual-component objective function for model training: one part focuses on the loss from labeled data, while the other addresses the regularized loss for unlabeled data, enhanced through two distinct levels of data augmentation. These combined losses concurrently refine the model parameters. Our method demonstrates superior performance over established benchmark algorithms, such as decision trees (DTs), support vector machines (SVMs), pi-models, and virtual adversarial training (VAT). It exhibits a marked improvement in the recognition accuracy, particularly when the proportion of labeled samples is as low as 1–4%

    Non-coding RNAs: a promising target for early metastasis intervention

    No full text
    Abstract. Metastases account for the overwhelming majority of cancer-associated deaths. The dissemination of cancer cells from the primary tumor to distant organs involves a complex process known as the invasion–metastasis cascade. The underlying biological mechanisms of metastasis, however, remain largely elusive. Recently, the discovery and characterization of non-coding RNAs (ncRNAs) have revealed the diversity of their regulatory roles, especially as key contributors throughout the metastatic cascade. Here, we review recent progress in how three major types of ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) are involved in the multistep procedure of metastasis. We further examine interactions among the three ncRNAs as well as current progress in their regulatory mechanisms. We also propose the prevention of metastasis in the early stages of cancer progression and discuss current translational studies using ncRNAs as targets for metastasis diagnosis and treatments. These studies provide insights into developing more effective strategies to target metastatic relapse

    Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells.

    Get PDF
    To demonstrate the benefits of RNA-Seq over microarray in transcriptome profiling, both RNA-Seq and microarray analyses were performed on RNA samples from a human T cell activation experiment. In contrast to other reports, our analyses focused on the difference, rather than similarity, between RNA-Seq and microarray technologies in transcriptome profiling. A comparison of data sets derived from RNA-Seq and Affymetrix platforms using the same set of samples showed a high correlation between gene expression profiles generated by the two platforms. However, it also demonstrated that RNA-Seq was superior in detecting low abundance transcripts, differentiating biologically critical isoforms, and allowing the identification of genetic variants. RNA-Seq also demonstrated a broader dynamic range than microarray, which allowed for the detection of more differentially expressed genes with higher fold-change. Analysis of the two datasets also showed the benefit derived from avoidance of technical issues inherent to microarray probe performance such as cross-hybridization, non-specific hybridization and limited detection range of individual probes. Because RNA-Seq does not rely on a pre-designed complement sequence detection probe, it is devoid of issues associated with probe redundancy and annotation, which simplified interpretation of the data. Despite the superior benefits of RNA-Seq, microarrays are still the more common choice of researchers when conducting transcriptional profiling experiments. This is likely because RNA-Seq sequencing technology is new to most researchers, more expensive than microarray, data storage is more challenging and analysis is more complex. We expect that once these barriers are overcome, the RNA-Seq platform will become the predominant tool for transcriptome analysis

    SF3B4 is regulated by microRNA-133b and promotes cell proliferation and metastasis in hepatocellular carcinomaResearch in context

    No full text
    Background: Splicing factor 3b subunit 4 (SF3B4) is a splicing factor and potential oncogene in hepatocellular carcinoma (HCC); however, its regulatory mechanism is yet unclear. We aimed to determine the role of SF3B4 in HCC and the underlying mechanism. Methods: To investigate the association between alternative splicing events and miRNAs, putative miRNAs were screened using TargetScan. Expression levels of and prognostic information for SF3B4 and miRNAs were determined based on public genomic data and clinical samples. Then, we examined the possible roles of SF3B4 and miRNA-133b in HCC cells and a xenograft mouse model. Pearson correlation analysis and in vitro experiments verified SF3B4 as a miRNA-133b target. Protein levels of key targets from the SF3B4 signaling pathway were estimated using western blotting. Findings: The expression of SF3B4 was upregulated in HCC tissues and cell lines whereas, the expression of miRNA-133b was downregulated. MiRNA-133b negatively regulated the expression of SF3B4. Effects of SF3B4 overexpression were partially abolished by miRNA-133b mimics, confirming that SF3B4 is a target of miRNA-133b. Moreover, molecules associated with SF3B4, including KLF4, KIP1, and SNAI2, were also modulated by miRNA-133b. Interpretation: SF3B4 plays a crucial role in HCC and is negatively regulated by miRNA-133b. The miRNA-133b/ SF3B4 axis may serve as a new therapeutic target for HCC treatment. Fund: China National Funds for Distinguished Young Scientists (No.81425019), the State Key Program of National Natural Science Foundation of China (No.81730076), Shanghai Science and Technology Committee Program (No.18XD1405300) and Specially-Appointed Professor Fund of Shanghai (GZ2015009). China National Funds for National Natural Science Fund (No.81672899). Keywords: SF3B4, HCC, miRNA-133b, Cell proliferation, Metastasi

    A 66 amino acid micro-peptide encoded by long non-coding RNA RP11-119F7.5 was identified in hepatocellular carcinoma

    No full text
    Objective:. Emerging data have shown that non-coding RNAs (ncRNAs) can encode micro-peptides (≤100 amino acids) that play an important role in regulating physiological and pathological processes. Herein, we explored ncRNAs that may encode micro-peptides that are involved in the development of hepatocellular carcinoma (HCC). Methods:. High-throughput sequencing of ribosomal protein S6 (RPS6) was performed in four cancer cell lines using RNA-immunoprecipitation (RIP). UCSC databases obtained the full length of the gene sequences and quantitative polymerase chain reaction (qPCR) was used to evaluate expression levels of ncRNAs of interest. The coding activity of ncRNA was assessed in vitro by co-immunoprecipitation, plasmid transfection, western blot, immunofluorescence and RNA fluorescence in situ hybridization. Mass spectrometry was performed to explore the potential functions of candidate micro-peptide in HCC. This study involving human tissue specimens was conducted in accordance with Declaration of Helsinki and approved by the Institutional Review Board of Changhai Hospital, Naval Military Medical University, China (approval No. CHEC2020-081) on June 6, 2020. Results:. We performed RIP assay using primary antibodies for RPS6 and high-throughput sequencing. A total of 223 overlapping genes were captured by RPS6-RIP. Venn diagram analysis revealed that 60 overlapping genes were detected in four cancer cell lines. QRT-PCR showed that six of the candidate genes (RP11-298J20.4, RP11-4O1.2, RP11-119F7.5, RP11-448G15.3, HCP5, RP11-517B11.7) were expressed in Huh7 and Hep3B cells. Further analysis of these six candidate genes and found that five (RP11-298J20.4, RP11-4O1.2, RP11-119F7.5, RP11-448G15.3, RP11-517B11.7) displayed higher expression levels in HCC cell lines (Huh7, Hep3B) and tumor tissues than in liver cell lines (L-02, QSG-7701) and non-tumor tissues, respectively. Performed additional RIP assays and confirmed that four of the genes (RP11-4O1.2, RP11-119F7.5, RP11-448G15.3, RP11-517B11.7) bound RPS6. We obtained the full length of the four gene sequences from the UCSC database and analyzed the open reading frames by ORF Finder; to determine the translation potential of the four candidate small open reading frames (smORFs), we subcloned a FLAG epitope tag into the C-terminal of the four selected smORFs before the stop codon, and the fusion sequences were then cloned into three different plasmid vectors (pSPT19, pcDNA3.1, and PEGFP-N1). We performed coupled transcription and translation reactions and found that the pSPT19 plasmids encoded small peptides in vitro. After then transfected the pcDNA3.1 constructs into Huh7 cells, and a single 7.2 kDa micro-peptide was encoded from the candidate smORF of RP11.119F7.5. We transfected the recombinant pEGFP-N1 plasmids with smORFs in HCC cells, and western blot analysis revealed a band above GFP in the RP11.119F7.5 recombinant plasmid lane. The coding potential of the RP11-119F7.5 vector was also confirmed by immunofluorescence assay. Fluorescence in situ hybridization assay revealed that RP11-119F7.5 was localized in the cytoplasm and nucleoplasm of HCC cells. Gene ontology enrichment analysis showed that the micro-peptide–interacting proteins were mainly involved in extracellular exosomes. We also found the identified proteins were involved in several biological functions like protein binding, poly(A) RNA binding, translational initiation, and the nuclear-transcribed mRNA catabolic process. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed the peptide-interacting proteins might participate in several critical pathways including ribosome, biosynthesis of amino acids, carbon metabolism, biosynthesis of antibiotics, glycolysis and gluconeogenesis, pathogenic Escherichia coli infection and influenza A. Conclusion:. Our study revealed a novel micro-peptide translated by ncRNA RP11-119F7.5, highlighting the coding ability and potential role of ncRNAs in HCC
    • …
    corecore