352 research outputs found

    Arms positioning in post-mastectomy proton radiation:Feasibility and development of a new arms down contouring atlas

    Get PDF
    Background and purpose: Breast cancer patients receiving radiation are traditionally positioned with both arms up, but this may not be feasible or comfortable for all patients. We evaluated the treatment planning and positioning reproducibility differences between the arms up and arms down positions for patients receiving post-mastectomy radiation therapy (PMRT) using proton pencil beam scanning (PBS). Materials and methods: Ten PMRT patients who were scheduled to receive PBS underwent CT-based treatment planning in both an arms down and a standard arms up position. An arms down contouring atlas was developed for consistency in treatment planning. Treatment plans were performed on both scans. A Wilcoxon test was applied to compare arms up and arms down metrics across patients. Five patients received treatment in the arms-down position at our institution while others were treated with the arms up. Residual set-up errors were recorded for each patient's treatment fractions and compared between positions. Results: Target structure coverage remained consistent between the arms up and arms down positions. In regard to the OAR, the heart mean and maximum doses were statistically significantly lower in the arms up position versus the arms down position, however, the absolute differences were modest. Patients demonstrated similar setup errors, less than 0.5 mm differences, in all directions. Conclusions: PBS for PMRT in the arms down position appeared stable and reproducible compared to the traditional arms up positioning. The degree of OAR sparing in the arms down group was minimally less robust but still far superior to conventional photon therapy

    Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment

    Get PDF
    The thermodynamics for the first electron transfer step for sulfide and oxygen indicates that the reaction is unfavorable as unstable superoxide and bisulfide radical ions would need to be produced. However, a two-electron transfer is favorable as stable S(0) and peroxide would be formed, but the partially filled orbitals in oxygen that accept electrons prevent rapid kinetics. Abiotic sulfide oxidation kinetics improve when reduced iron and/or manganese are oxidized by oxygen to form oxidized metals which in turn oxidize sulfide. Biological sulfur oxidation relies on enzymes that have evolved to overcome these kinetic constraints to affect rapid sulfide oxidation. Here we review the available thermodynamic and kinetic data for H2S and HS• as well as O2, reactive oxygen species, nitrate, nitrite, and NOx species. We also present new kinetic data for abiotic sulfide oxidation with oxygen in trace metal clean solutions that constrain abiotic rates of sulfide oxidation in metal free solution and agree with the kinetic and thermodynamic calculations. Moreover, we present experimental data that give insight on rates of chemolithotrophic and photolithotrophic sulfide oxidation in the environment. We demonstrate that both anaerobic photolithotrophic and aerobic chemolithotrophic sulfide oxidation rates are three or more orders of magnitude higher than abiotic rates suggesting that in most environments biotic sulfide oxidation rates will far exceed abiotic rates due to the thermodynamic and kinetic constraints discussed in the first section of the paper. Such data reshape our thinking about the biotic and abiotic contributions to sulfide oxidation in the environment

    Information Symmetries in Irreversible Processes

    Full text link
    We study dynamical reversibility in stationary stochastic processes from an information theoretic perspective. Extending earlier work on the reversibility of Markov chains, we focus on finitary processes with arbitrarily long conditional correlations. In particular, we examine stationary processes represented or generated by edge-emitting, finite-state hidden Markov models. Surprisingly, we find pervasive temporal asymmetries in the statistics of such stationary processes with the consequence that the computational resources necessary to generate a process in the forward and reverse temporal directions are generally not the same. In fact, an exhaustive survey indicates that most stationary processes are irreversible. We study the ensuing relations between model topology in different representations, the process's statistical properties, and its reversibility in detail. A process's temporal asymmetry is efficiently captured using two canonical unifilar representations of the generating model, the forward-time and reverse-time epsilon-machines. We analyze example irreversible processes whose epsilon-machine presentations change size under time reversal, including one which has a finite number of recurrent causal states in one direction, but an infinite number in the opposite. From the forward-time and reverse-time epsilon-machines, we are able to construct a symmetrized, but nonunifilar, generator of a process---the bidirectional machine. Using the bidirectional machine, we show how to directly calculate a process's fundamental information properties, many of which are otherwise only poorly approximated via process samples. The tools we introduce and the insights we offer provide a better understanding of the many facets of reversibility and irreversibility in stochastic processes.Comment: 32 pages, 17 figures, 2 tables; http://csc.ucdavis.edu/~cmg/compmech/pubs/pratisp2.ht

    White Paper: Measuring Research Outputs Through Bibliometrics

    Get PDF
    The suggested citation for this white paper is: University of Waterloo Working Group on Bibliometrics, Winter 2016. White Paper: Measuring Research Outputs through Bibliometrics, Waterloo, Ontario: University of Waterloo.This White Paper provides a high-level review of issues relevant to understanding bibliometrics, and practical recommendations for how to appropriately use these measures. This is not a policy paper; instead, it defines and summarizes evidence that addresses appropriate use of bibliometric analysis at the University of Waterloo. Issues identified and recommendations will generally apply to other academic institutions. Understanding the types of bibliometric measures and their limitations makes it possible to identify both appropriate uses and crucial limitations of bibliometric analysis. Recommendations offered at the end of this paper provide a range of opportunities for how researchers and administrators at Waterloo and beyond can integrate bibliometric analysis into their practice

    A MCP1 fusokine with CCR2-specific tumoricidal activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The CCL2 chemokine is involved in promoting cancer angiogenesis, proliferation and metastasis by malignancies that express CCR2 receptor. Thus the CCL2/CCR2 axis is an attractive molecular target for anticancer drug development.</p> <p>Methods</p> <p>We have generated a novel fusion protein using GMCSF and an N-terminal truncated version of MCP1/CCL2 (6-76) [hereafter GMME1] and investigated its utility as a CCR2-specific tumoricidal agent.</p> <p>Results</p> <p>We found that distinct to full length CCL2 or its N-truncated derivative (CCL2 5-76), GMME1 bound to CCR2 on mouse lymphoma EG7, human multiple myeloma cell line U266, or murine and human medulloblastoma cell lines, and led to their death by apoptosis. We demonstrated that GMME1 specifically blocked CCR2-associated STAT3 phosphorylation and up-regulated pro-apoptotic BAX. Furthermore, GMME1 significantly inhibited EG7 tumor growth in C57BL/6 mice, and induced apoptosis of primary myeloma cells from patients.</p> <p>Conclusion</p> <p>Our data demonstrate that GMME1 is a fusokine with a potent, CCR2 receptor-mediated pro-apoptotic effect on tumor cells and could be exploited as a novel biological therapy for CCR2<sup>+ </sup>malignancies including lymphoid and central nervous system malignancies.</p
    • …
    corecore