16,657 research outputs found

    Entanglement and optimal strings of qubits for memory channels

    Get PDF
    We investigate the problem of enhancement of mutual information by encoding classical data into entangled input states of arbitrary length and show that while there is a threshold memory or correlation parameter beyond which entangled states outperform the separable states, resulting in a higher mutual information, this memory threshold increases toward unity as the length of the string increases. These observations imply that encoding classical data into entangled states may not enhance the classical capacity of quantum channels.Comment: 14 pages, 8 figures, latex, accepted for publication in Physical Review

    The double life of electrons in magnetic iron pnictides, as revealed by NMR

    Full text link
    We present a phenomenological, two-fluid approach to understanding the magnetic excitations in Fe pnictides, in which a paramagnetic fluid with gapless, incoherent particle-hole excitations coexists with an antiferromagnetic fluid with gapped, coherent spin wave excitations. We show that this two-fluid phenomenology provides an excellent quantitative description of NMR data for magnetic "122" pnictides, and argue that it finds a natural justification in LSDA and spin density wave calculations. We further use this phenomenology to estimate the maximum renormalisation of the ordered moment that can follow from low-energy spin fluctuations in Fe pnictides. We find that this is too small to account for the discrepancy between ab intio calculations and neutron scattering measurements.Comment: Accepted for publication in Europhys. Lett. 6 pages, 4 figure

    The Minimum Description Length Principle and Model Selection in Spectropolarimetry

    Get PDF
    It is shown that the two-part Minimum Description Length Principle can be used to discriminate among different models that can explain a given observed dataset. The description length is chosen to be the sum of the lengths of the message needed to encode the model plus the message needed to encode the data when the model is applied to the dataset. It is verified that the proposed principle can efficiently distinguish the model that correctly fits the observations while avoiding over-fitting. The capabilities of this criterion are shown in two simple problems for the analysis of observed spectropolarimetric signals. The first is the de-noising of observations with the aid of the PCA technique. The second is the selection of the optimal number of parameters in LTE inversions. We propose this criterion as a quantitative approach for distinguising the most plausible model among a set of proposed models. This quantity is very easy to implement as an additional output on the existing inversion codes.Comment: Accepted for publication in the Astrophysical Journa

    Entropy exchange and entanglement in the Jaynes-Cummings model

    Full text link
    The Jaynes-Cummings model is the simplest fully quantum model that describes the interaction between light and matter. We extend a previous analysis by Phoenix and Knight (S. J. D. Phoenix, P. L. Knight, Annals of Physics 186, 381). of the JCM by considering mixed states of both the light and matter. We present examples of qualitatively different entropic correlations. In particular, we explore the regime of entropy exchange between light and matter, i.e. where the rate of change of the two are anti-correlated. This behavior contrasts with the case of pure light-matter states in which the rate of change of the two entropies are positively correlated and in fact identical. We give an analytical derivation of the anti-correlation phenomenon and discuss the regime of its validity. Finally, we show a strong correlation between the region of the Bloch sphere characterized by entropy exchange and that characterized by minimal entanglement as measured by the negative eigenvalues of the partially transposed density matrix.Comment: 8 pages, 5 figure

    Specific protein-protein binding in many-component mixtures of proteins

    Get PDF
    Proteins must bind to specific other proteins in vivo in order to function. The proteins must bind only to one or a few other proteins of the of order a thousand proteins typically present in vivo. Using a simple model of a protein, specific binding in many component mixtures is studied. It is found to be a demanding function in the sense that it demands that the binding sites of the proteins be encoded by long sequences of bits, and the requirement for specific binding then strongly constrains these sequences. This is quantified by the capacity of proteins of a given size (sequence length), which is the maximum number of specific-binding interactions possible in a mixture. This calculation of the maximum number possible is in the same spirit as the work of Shannon and others on the maximum rate of communication through noisy channels.Comment: 13 pages, 3 figures (changes for v2 mainly notational - to be more in line with notation in information theory literature

    IrSr_2Sm_{1.15}Ce_{0.85}Cu_{2.175}O_{10}: A Novel Reentrant Spin-Glass Material

    Get PDF
    A new iridium containing layered cuprate material, IrSr_2Sm_{1.15}Ce_{0.85}Cu_{2.175}O_{10, has been synthesized by conventional ambient-pressure solid-state techniques. The material's structure has been fully characterized by Rietveld refinement of high resolution synchrotron X-ray diffraction data; tilts and rotations of the IrO_6 octahedra are observed as a result of a bond mismatch between in-plane Ir-O and Cu-O bond lengths. DC-susceptibility measurements evidence a complex set of magnetic transitions upon cooling that are characteristic of a reentrant spin-glass ground-state. The glassy character of the lowest temperature, Tg=10 K, transition is further confirmed by AC-susceptibility measurements, showing a characteristic frequency dependence that can be well fitted by the Vogel-Fulcher law and yields a value of \Delta_(T_f)/[T_f \Delta log({\omega})] =0.015(1), typical of dilute magnetic systems. Electronic transport measurements show the material to be semiconducting at all temperatures with no transition to a superconducting state. Negative magnetoresistance is observed when the material is cooled below 25 K, and the magnitude of this magnetoresistance is seen to increase upon cooling to a value of MR = -9 % at 8 K

    Quantum Analogue Computing

    Full text link
    We briefly review what a quantum computer is, what it promises to do for us, and why it is so hard to build one. Among the first applications anticipated to bear fruit is quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data is encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data is encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous variable quantum computers (CVQC) becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.Comment: 10 pages, to appear in the Visions 2010 issue of Phil. Trans. Roy. Soc.

    Information preserving structures: A general framework for quantum zero-error information

    Get PDF
    Quantum systems carry information. Quantum theory supports at least two distinct kinds of information (classical and quantum), and a variety of different ways to encode and preserve information in physical systems. A system's ability to carry information is constrained and defined by the noise in its dynamics. This paper introduces an operational framework, using information-preserving structures to classify all the kinds of information that can be perfectly (i.e., with zero error) preserved by quantum dynamics. We prove that every perfectly preserved code has the same structure as a matrix algebra, and that preserved information can always be corrected. We also classify distinct operational criteria for preservation (e.g., "noiseless", "unitarily correctible", etc.) and introduce two new and natural criteria for measurement-stabilized and unconditionally preserved codes. Finally, for several of these operational critera, we present efficient (polynomial in the state-space dimension) algorithms to find all of a channel's information-preserving structures.Comment: 29 pages, 19 examples. Contains complete proofs for all the theorems in arXiv:0705.428
    • 

    corecore