23 research outputs found

    Pectin modulates intestinal immunity in a pig model via regulating the gut microbiota-derived tryptophan metabolite-AhR-IL22 pathway.

    Full text link
    peer reviewed[en] BACKGROUND: Pectin is a heteropolysaccharide that acts as an intestinal immunomodulator, promoting intestinal development and regulating intestinal flora in the gut. However, the relevant mechanisms remain obscure. In this study, pigs were fed a corn-soybean meal-based diet supplemented with either 5% microcrystalline cellulose (MCC) or 5% pectin for 3 weeks, to investigate the metabolites and anti-inflammatory properties of the jejunum. RESULT: The results showed that dietary pectin supplementation improved intestinal integrity (Claudin-1, Occludin) and inflammatory response [interleukin (IL)-10], and the expression of proinflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) was down-regulated in the jejunum. Moreover, pectin supplementation altered the jejunal microbiome and tryptophan-related metabolites in piglets. Pectin specifically increased the abundance of Lactococcus, Enterococcus, and the microbiota-derived metabolites (skatole (ST), 3-indoleacetic acid (IAA), 3-indolepropionic acid (IPA), 5-hydroxyindole-3-acetic acid (HIAA), and tryptamine (Tpm)), which activated the aryl hydrocarbon receptor (AhR) pathway. AhR activation modulates IL-22 and its downstream pathways. Correlation analysis revealed the potential relationship between metabolites and intestinal morphology, intestinal gene expression, and cytokine levels. CONCLUSION: In conclusion, these results indicated that pectin inhibits the inflammatory response by enhancing the AhR-IL22-signal transducer and activator of transcription 3 signaling pathway, which is activated through tryptophan metabolites

    Pectin supplementation ameliorates intestinal epithelial barrier function damage by modulating intestinal microbiota in lipopolysaccharide-challenged piglets.

    Full text link
    peer reviewedDuring weaning, infants and young animals are susceptible to severe enteric infections, thus inducing intestinal microbiota dysbiosis, intestinal inflammation, and impaired intestinal barrier function. Pectin (PEC), a prebiotic polysaccharide, enhances intestinal health with the potential for a therapeutic effect on intestinal diseases. One 21-d study was conducted to investigate the protective effect of pectin against intestinal injury induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) in a piglet model. A total of 24 piglets (6.77±0.92 kg BW; Duroc × Landrace × Large White; barrows; 21 d of age) were randomly assigned into three groups: control group, LPS-challenged group, and PEC + LPS group. Piglets were administrated with LPS or saline on d14 and d21 of the experiment. All piglets were slaughtered and intestinal samples were collected after 3 h administration on d21. Pectin supplementation ameliorated the LPS-induced inflammation response and damage to the ileal morphology. Meanwhile, pectin also improved intestinal mucin barrier function, increased the mRNA expression of MUC2, and improved intestinal mucus glycosylation. LPS challenge reduced the diversity of intestinal microbiota and enriched the relative abundance of Helicobacter. Pectin restored alpha diversity and improved the structure of the gut microbiota by enriching anti-inflammatory bacteria and short-chain fatty acids (SCFAs)-producing bacteria, and increased the concentrations of acetate. In addition, Spearman rank correlation analysis also revealed the potential relationship between intestinal microbiota and intestinal morphology, intestinal inflammation, and intestinal glycosylation in piglets. Taken together, these results indicate that pectin enhances intestinal integrity and barrier function by altering intestinal microbiota composition and their metabolites, which subsequently alleviates intestinal injury and finally improves the growth performance of piglets

    An Improved Aerosol Optical Depth Retrieval Algorithm for Moderate to High Spatial Resolution Optical Remotely Sensed Imagery

    No full text
    To extract quantitative land information accurately and monitor the air pollution at city scale from moderate to high spatial resolution (MHSR) with a resolution no coarser than 30 m, optical remotely sensed imagery and aerosol parameters, especially aerosol optical depth (AOD), are a necessary step. In this paper, we introduce a new algorithm that can effectively estimate the spatial distribution of atmospheric aerosols and retrieve surface reflectance from moderate to high spatial resolution imagery under general atmosphere and land surface conditions. This algorithm has been improved in the following three aspects: (i) it has been developed for most of the moderate to high spatial resolution remotely sensed imagery; (ii) it can be applied to all kinds of land surface types including bright surface; and (iii) it is completely automatic. This algorithm is therefore suitable for operational applications. The derived AOD in Beijing from Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Mapper Plus (ETM+), and Huan Jing 1 (HJ-1/CCD) data is validated with AErosol Robotic NETwork (AERONET) ground measurements at Beijng and Xianghe stations

    Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors

    No full text
    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors’ radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors’ application, and as such will promote the development of Chinese satellite data

    Radiometric Cross-Calibration of GF-4 in Multispectral Bands

    No full text
    The GaoFen-4 (GF-4), launched at the end of December 2015, is China’s first high-resolution geostationary optical satellite. A panchromatic and multispectral sensor (PMS) is onboard the GF-4 satellite. Unfortunately, the GF-4 has no onboard calibration assembly, so on-orbit radiometric calibration is required. Like the charge-coupled device (CCD) onboard HuanJing-1 (HJ) or the wide field of view sensor (WFV) onboard GaoFen-1 (GF-1), GF-4 also has a wide field of view, which provides challenges for cross-calibration with narrow field of view sensors, like the Landsat series. A new technique has been developed and used to calibrate HJ-1/CCD and GF-1/WFV, which is verified viable. The technique has three key steps: (1) calculate the surface using the bi-directional reflectance distribution function (BRDF) characterization of a site, taking advantage of its uniform surface material and natural topographic variation using Landsat Enhanced Thematic Mapper Plus (ETM+)/Operational Land Imager (OLI) imagery and digital elevation model (DEM) products; (2) calculate the radiance at the top-of-the atmosphere (TOA) with the simulated surface reflectance using the atmosphere radiant transfer model; and (3) fit the calibration coefficients with the TOA radiance and corresponding Digital Number (DN) values of the image. This study attempts to demonstrate the technique is also feasible to calibrate GF-4 multispectral bands. After fitting the calibration coefficients using the technique, extensive validation is conducted by cross-validation using the image pairs of GF-4/PMS and Landsat-8/OLI with similar transit times and close view zenith. The validation result indicates a higher accuracy and frequency than that given by the China Centre for Resources Satellite Data and Application (CRESDA) using vicarious calibration. The study shows that the new technique is also quite feasible for GF-4 multispectral bands as a routine long-term procedure

    Cross-Calibration of GF-1/WFV over a Desert Site Using Landsat-8/OLI Imagery and ZY-3/TLC Data

    No full text
    The wide field of view (WFV) is an optical imaging sensor on-board the Gao Fen 1 (GF-1). The WFV lacks an on-board calibrator, so on-orbit radiometric calibration is required. Zhong et al. proposed a method for cross-calibrating the charge-coupled device on-board the Chinese Huan Jing 1 (HJ-1/CCD) that can be applied to the GF-1/WFV. However, the accuracy is limited because of the wider radiometric dynamic range and the higher spatial resolution of the GF-1/WFV. Therefore, Landsat-8 Operational Land Imager (OLI) imagery with a radiometric resolution similar to that of the GF-1/WFV and DEM extracted from ZY-3 three-line array panchromatic camera (TLC) with a higher spatial resolution were used. A calibration site with uniform surface material and a natural topographic variation was selected, and a model of this site’s bidirectional reflectance distribution function (BRDF) was developed. The model has excellent agreement with the real situation, as shown by the comparison of the simulations to the actual OLI surface reflectance. Then, the model was used to calibrate the WFV. Compared with the TOA reflectance from synchronized Landsat-8/OLI images, all errors calculated with the calibration coefficients retrieved in this paper are less than 5%, much less than the errors calculated with the calibration coefficients given by the China Centre for Resource Satellite Data and Application (CRESDA)

    Analysis of Differences in Phenology Extracted from the Enhanced Vegetation Index and the Leaf Area Index

    No full text
    Remote-sensing phenology detection can compensate for deficiencies in field observations and has the advantage of capturing the continuous expression of phenology on a large scale. However, there is some variability in the results of remote-sensing phenology detection derived from different vegetation parameters in satellite time-series data. Since the enhanced vegetation index (EVI) and the leaf area index (LAI) are the most widely used vegetation parameters for remote-sensing phenology extraction, this paper aims to assess the differences in phenological information extracted from EVI and LAI time series and to explore whether either index performs well for all vegetation types on a large scale. To this end, a GLASS (Global Land Surface Satellite Product)-LAI-based phenology product (GLP) was generated using the same algorithm as the MODIS (Moderate Resolution Imaging Spectroradiometer)-EVI phenology product (MLCD) over China from 2001 to 2012. The two phenology products were compared in China for different vegetation types and evaluated using ground observations. The results show that the ratio of missing data is 8.3% for the GLP, which is less than the 22.8% for the MLCD. The differences between the GLP and the MLCD become stronger as the latitude decreases, which also vary among different vegetation types. The start of the growing season (SOS) of the GLP is earlier than that of the MLCD in most vegetation types, and the end of the growing season (EOS) of the GLP is generally later than that of the MLCD. Based on ground observations, it can be suggested that the GLP performs better than the MLCD in evergreen needleleaved forests and croplands, while the MLCD performs better than the GLP in shrublands and grasslands

    Modulation of Pectin on Mucosal Innate Immune Function in Pigs Mediated by Gut Microbiota

    No full text
    The use of prebiotics to regulate gut microbiota is a promising strategy to improve gut health. Pectin (PEC) is a prebiotic carbohydrate that enhances the health of the gut by promoting the growth of beneficial microbes. These microbes produce metabolites that are known to improve mucosal immune responses. This study was conducted to better understand effects of PEC on the microbiome and mucosal immunity in pigs. Pigs were fed two diets, with or without 5% apple PEC, for 72 days. Effects of PEC on the microbiota, cytokine expression, short-chain fatty acids (SCFAs) concentration and barrier function were examined in the ileum and cecum of the pigs. An integrative analysis was used to determine interactions of PEC consumption with bacterial metabolites and microbiome composition and host mucosal responses. Consumption of PEC reduced expression of pro-inflammatory cytokines such as IFN-γ, IL-6, IL-8, IL-12 and IL-18, and the activation of the pro-inflammatory NF-κB signaling cascade. Expression of MUC2 and TFF and the sIgA content was upregulated in the mucosa of PEC-fed pigs. Network analysis revealed that PEC induced significant interactions between microbiome composition in the ileum and cecum on mucosal immune pathways. PEC-induced changes in bacterial genera and fermentation metabolites, such as Akkermansia, Faecalibacterium, Oscillibacter, Lawsonia and butyrate, correlated with the differentially expressed genes and cytokines in the mucosa. In summary, the results demonstrate the anti-inflammatory properties of PEC on mucosal immune status in the ileum and cecum effected through modulation of the host microbiome

    Follow-up outcome analysis of 324 cases of early-onset and late-onset mild fetal ventriculomegaly: a retrospective cohort study

    No full text
    Abstract Background Mild fetal ventriculomegaly (VM) is a nonspecific finding common to several pathologies with varying prognosis and is, therefore, a challenge in fetal consultation. We aimed to perform a constant, detailed analysis of prenatal findings and postnatal outcomes in fetuses with early-onset and late-onset mild ventriculomegaly, and provide a new evidence basis and new perspective for prenatal counseling. Methods This is a retrospective cohort study of women with a diagnosis of mild fetal VM between January 2018 and October 2020. The population was divided into two groups according to the gestational ages (GAs) at initial diagnosis: the early-onset group (diagnosed at/before 24+6 weeks) and the late-onset group (diagnosed after 24+6 weeks). Clinical data and pregnancy outcomes were obtained from hospital records. The children’s neurodevelopment status was assessed using the Ages and Stages Questionnaire, Third Edition (ASQ-3) and telephone interviews. Results Our study cohort comprised 324 fetuses, out of which 94 (29%) were classified as early-onset group and 230 (71%) late-onset group. Early-onset group was more likely to have concurrent additional abnormalities, whereas in the late-onset group, isolated enlargement was more common (P = 0.01). Unilateral enlargement was more common in the late-onset group (P = 0.05), and symmetrical enlargement in the early-onset group (P < 0.01). In addition, early-onset mild VM cases were more likely to have intrauterine progression (P = 0.03), and many had a higher proportion of complex multisystem abnormalities. Compared with the late-onset group, the early-onset group was more often associated with congenital brain structure malformations. Approximately 11% of fetuses with mild VM had postnatal neurodevelopmental delay/disorders, and the risk was higher in the early-onset group (19.4% vs. 7.4%). Regression analysis showed that the GA at first diagnosis, non-isolated, and intrauterine progression significantly correlated with neurodevelopmental abnormalities. Conclusions Early-onset and late-onset mild VM had significantly different ultrasound features and outcomes. Early-onset mild VM may have more complex potential abnormalities and are more likely to predict poor prognosis than the late-onset

    Bioregional Alterations in Gut Microbiome Contribute to the Plasma Metabolomic Changes in Pigs Fed with Inulin

    No full text
    Inulin (INU) is a non-digestible carbohydrate, known for its beneficial properties in metabolic disorders. However, whether and how gut microbiota in its regulation contributes to host metabolism has yet to be investigated. We conduct this study to examine the possible associations between the gut microbiota and circulating gut microbiota&ndash;host co-metabolites induced by inulin interventions. Plasma and intestinal site samples were collected from the pigs that have consumed inulin diet for 60 days. High-throughput sequencing was adopted for microbial composition, and the GC-TOF-MS-based metabolomics were used to characterize featured plasma metabolites upon inulin intervention. Integrated multi-omics analyses were carried out to establish microbiota&ndash;host interaction. Inulin consumption decreased the total cholesterol (p = 0.04) and glucose (p = 0.03) level in serum. Greater &beta;-diversity was observed in the cecum and colon of inulin-fed versus that of control-fed pigs (p &lt; 0.05). No differences were observed in the ileum. In the cecum, 18 genera were altered by inulin, followed by 17 in the colon and 6 in the ileum. Inulin increased propionate, and isobutyrate concentrations but decreased the ratio of acetate to propionate in the cecum, and increased total short fatty acids, valerate, and isobutyrate concentrations in the colon. Metabolomic analysis reveals that indole-3-propionic acid (IPA) was significantly higher, and the branched-chain amino acids (BCAA), L-valine, L-isoleucine, and L-leucine are significantly lower in the inulin groups. Mantel test and integrative analysis revealed associations between plasma metabolites (e.g., IPA, BCAA, L-tryptophan) and inulin-responsive cecal microbial genera. These results indicate that the inulin has regional effects on the intestine microbiome in pigs, with the most pronounced effects occurring in the cecum. Moreover, cecum microbiota plays a pivotal role in the modulation of circulating host metabolites upon inulin interventio
    corecore