210 research outputs found

    Conversion of biorenewable feedstocks: New challenges in heterogeneous catalysis

    Get PDF
    For biorenewable feedstocks to serve as a significant source of chemicals and/or fuels, the development of new chemical processes as well as biological processes will be required. However, the conversion of biorenewable feedstocks with heterogeneous catalyst-based processes provides new challenges in inorganic catalyst research and development relative to historical work with petrochemical feedstocks. These catalyst and process challenges include the need to convert highly functionalized molecules with high selectivity, to develop stable catalytic liquid-solid interfaces in which the liquid phase is commonly aqueous, to control solvent phase effects and to develop novel reaction systems. While some of these challenges will be addressed using novel catalytic materials, others will need to be overcome through design of new catalytic reaction systems. Examples of emerging research results demonstrating unique approaches that have been taken to begin to address the efficient conversion of biorenewable feedstocks to chemicals and fuels are discussed

    Fast pyrolysis of glucose‐based carbohydrates with added NaCl part 2: Validation and evaluation of the mechanistic model

    Get PDF
    A mechanistic model considering the significant catalytic effects of Na+ on fast pyrolysis of glucose‐based carbohydrates was developed in Part 1 of this study. A computational framework based on continuous distribution kinetics and mass action kinetics was constructed to solve the mechanistic model. Agreement between model yields of various pyrolysis products with experimental data from fast pyrolysis of glucose‐based carbohydrates dosed with NaCl ranging from 0–0.34 mmol/g at 500 °C validated the model and demonstrated the robustness and extendibility of the mechanistic model. The model was able to capture the yields of major and minor products as well as their trends across NaCl concentrations. Modeling results showed that Na+ accelerated the rate of decomposition and reduced the time for complete thermoconversion of carbohydrates. The sharp reduction in the yield of levoglucosan (LVG) from fast pyrolysis of cellulose in the presence of NaCl was mainly caused by reduced decomposition of cellulose chains via end‐chain initiation and depropagation due to Na+ favoring competing dehydration reactions. Analysis of the contributions of reaction pathways showed that the decomposition of LVG made a minor contribution to its yield reduction and contributed less than 0.5% to the final yield of glycolaldehyde from fast pyrolysis of glucose‐based carbohydrates in the presence of NaCl

    Fast pyrolysis of glucose‐based carbohydrates with added NaCl part 1: Experiments and development of a mechanistic model

    Get PDF
    Sodium ions, one of the natural inorganic constituents in lignocellulosic biomass, significantly alter pyrolysis behavior and resulting chemical speciation. Here, experiments were conducted using a micropyrolyzer to investigate the catalytic effects of NaCl on fast pyrolysis of glucose‐based carbohydrates (glucose, cellobiose, maltohexaose, and cellulose), and on a major product of cellulose pyrolysis, levoglucosan (LVG). A mechanistic model that addressed the significant catalytic effects of NaCl on the product distribution was developed. The model incorporated interactions of Na+ with cellulosic chains and low molecular weight species, reactions mediated by Na+ including dehydration, cyclic/Grob fragmentation, ring‐opening/closing, isomerization, and char formation, and a degradation network of LVG in the presence of Na+. Rate coefficients of elementary steps were specified based on Arrhenius parameters. The mechanistic model for cellulose included 768 reactions of 222 species, which included 252 reactions of 150 species comprising the mechanistic model of glucose decomposition in the presence of NaCl

    Production of 5-Hydroxymethylfurfural from Glucose Using a Combination of Lewis and Brønsted Acid Catalysts in Water in a Biphasic Reactor with an Alkylphenol Solvent

    Get PDF
    We report the catalytic conversion of glucose in high yields (62%) to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. The reaction system consists of a Lewis acid metal chloride (e.g., AlCl 3) and a Bronsted acid (HCl) in a biphasic reactor consisting of water and an alkylphenol compound (2-sec-butylphenol) as the organic phase. The conversion of glucose in the presence of Lewis and Bronsted acidity proceeds through a tandem pathway involving isomerization of glucose to fructose, followed by dehydration of fructose to HMF. The organic phase extracts 97% of the HMF produced, while both acid catalysts remain in the aqueous phase

    Synthesis of hierarchically structured aluminas under controlled hydrodynamic conditions

    Get PDF
    Aluminas having hierarchical bimodal pore structures with regular arrayed macropores interconnected with mesopores were synthesized in a cone/plate apparatus that provided well-defined hydrodynamic I conditions. A parametric synthesis study was performed to better understand the synthesis conditions required to form the hierarchical structures. The synthesis experiments demonstrated that the hierarchnical structure could only be formed under limited mixing conditions. The mesoporous structure, which was created by interstitial porosity between boehmite nanoparticles, was formed independently of the macropores and was not significantly impacted by the use of a surfactant, whereas the formation of the macropores required the presence of an alkoxide droplet within the synthesis mixture and the surfactant played no role other than to influence the hydrodynamic conditions during synthesis

    High activity Pd-Fe bimetallic catalysts for aqueous phase hydrogenations

    Get PDF
    Palladium-iron bimetallic catalysts were synthesized using carbon-coated silica supports that provided high hydrogenation activity relative to monometallic palladium under condensed-phase hydrothermal conditions. The catalysts were applied to the hydrogenation of carbonyl groups in acetone, 2-pentanone, and propionaldehyde. While Fe incorporation independent of Pd-to-Fe ratio gave enhanced activity, the catalysts having more Fe than Pd gave more than a three-fold increase in hydrogenation activity relative to the Pd only counterpart. The activity enhancement appeared to be related to the influence of Fe on the Pd as Fe under the condensed-phase reaction conditions was inert. The catalysts were also tested for hydrogenation of unsaturated carbon-carbon double bond and aromatic rings in which more moderate activity enhancement was observed. Through evaluating the influence of Pd-to-Fe ratio on catalyst properties and catalytic performance for the range of molecules, it is proposed that the turnover frequency enhancement can be attributed to the formation of Pdδ− via Pd-Fe interaction

    Kinetic Analysis of the Hydrogenolysis of Lower Polyhydric Alcohols: Glycerol to Glycols

    Get PDF
    The production of ethylene glycol and propylene glycol from higher polyhydric alcohols has been parametrically examined numerous times. However, efforts to develop improved catalyst systems require a better understanding of the reaction mechanism. Glycerol conversion to the glycols represents an initial system for developing an improved mechanistic understanding of the conversion of the more complex higher polyhydric alcohols. Batch reactor studies with ruthenium on carbon catalysts were performed at two pH levels to obtain kinetic data. Langmuir-Hinshelwood-type models were developed from the experimental data to describe the hydrogenolysis of glycerol into ethylene glycol and propylene glycol as well as further degradation of the glycols. Detailed information on the competitive adsorption coefficients for the reaction species was determined, which led to conclusions about the limitations of previous parametric analysis

    Reduction behavior of potassium-promoted iron oxide under mixed steam/hydrogen atmospheres

    Get PDF
    Potassium-promoted iron oxide catalysts are used in large volume for the commercial ethylbenzene dehydrogenation to styrene process. Short-term deactivation of these catalysts, which is addressed by operating in excess steam, is thought to be caused due to reactive site loss through coking and/or reduction. However, the relative importance of the two mechanisms is not known. Presented are results concerning the reduction behavior of potassium-promoted iron oxide materials in the absence of carbon. Thermogravimetric experiments and X-ray diffraction analysis were used to examine the reduction behavior of potassium-promoted iron oxide materials. The reduction behavior was then compared with results from isothermal ethylbenzene dehydrogenation reactor studies under low steam-to-ethylbenzene operation. Potassium incorporation was found to stabilize the iron oxide against reduction apparently through the formation of KFeO 2. Chromium addition improved the reduction resistance, which gave good qualitative agreement with the dehydrogenation reaction studies. In contrast, vanadium incorporation led to more significant reduction as well as poor stability in the dehydrogenation reaction

    Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR

    Get PDF
    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al2O3-supported Pd nanoparticle catalysts. By offering \u3e2500-fold time savings, the technique enabled the observation of 13C–13C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface
    corecore