48 research outputs found

    Results of a phase I-II study of fenretinide and rituximab for patients with indolent B-cell lymphoma and mantle cell lymphoma.

    Get PDF
    Fenretinide, a synthetic retinoid, induces apoptotic cell death in B-cell non-Hodgkin lymphoma (B-NHL) and acts synergistically with rituximab in preclinical models. We report results from a phase I-II study of fenretinide with rituximab for B-NHLs. Eligible diagnoses included indolent B-NHL or mantle cell lymphoma. The phase I design de-escalated from fenretinide at 900 mg/

    Anti-CD45 Pretargeted Radioimmunotherapy Prior to Bone Marrow Transplantation without Total Body Irradiation Facilitates Engraftment From Haploidentical Donors and Prolongs Survival in a Disseminated Murine Leukemia Model

    Get PDF
    s / Biol Blood Marrow Transplant 19 (2013) S211eS232 S228 chemotherapy was HIDAC (1-3 grams/m2 for 6-8 doses)/ Etoposide(15-40mg/kg) in 16 patients and growth factor alone in one patient. Median time from diagnosis to ASCT was 4.2 (range 3.6-7) months. Preparative regimen for ASCT was Busulfan (3.2mg/kg x 4)/Etoposide (60 mg/kg) in 12 patients and high dose melphalan in 5 patients. The median CD34 cells infused was 4.9 x 10e6/kg (range 2.8 to 15.9).All patients engrafted with a median time to neutrophil engraftment of 11 (range10-12) days. The median time to platelet engraftment was 20 (range15-40) days. The median length of inpatient stay during the ASCT admission was 14 (range 10-25) days. One patient died of progressive disease 14 months post ASCT. Two patients died in remission on day 53 (sepsis) and day 836 (unknown cause) post ASCT. Fourteen patients (82%) are currently alive in complete remission. at a median follow-up of 20 (range 140) months post ASCT. Conclusion: Consolidation of good risk AML patients with ASCT following induction of complete remission is safe and effective in preventing relapse in good risk AML patients

    Pretargeted Radioimmunotherapy Using Genetically Engineered Antibody-Streptavidin Fusion Proteins for Treatment of Non-Hodgkin Lymphoma

    Get PDF
    Pretargeted radioimmunotherapy (PRIT) using streptavidin (SAv)-biotin technology can deliver higher therapeutic doses of radioactivity to tumors than conventional RIT. However, “endogenous” biotin can interfere with the effectiveness of this approach by blocking binding of radiolabeled biotin to SAv. We engineered a series of SAv FPs that down-modulate the affinity of SAv for biotin, while retaining high avidity for divalent DOTA-bis-biotin to circumvent this problem

    Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma.

    Get PDF
    Modification of T cells with chimeric antigen receptors (CAR) has emerged as a promising treatment modality for human malignancies. Integration of co-stimulatory domains into CARs can augment the activation and function of genetically targeted T cells against tumors. However, the potential for insertional mutagenesis and toxicities due to the infused cells have made development of safe methods for removing transferred cells an important consideration. We have genetically modified human T cells with a lentiviral vector to express a CD20-CAR containing both CD28 and CD137 co-stimulatory domains, a "suicide gene" relying on inducible activation of caspase 9 (iC9), and a truncated CD19 selectable marker. Rapid expansion (2000 fold) of the transduced T cells was achieved in 28 days after stimulation with artificial antigen presenting cells. Transduced T cells exhibited effective CD20-specific cytotoxic activity in vitro and in a mouse xenograft tumor model. Activation of the iC9 suicide switch resulted in efficient removal of transduced T cells both in vitro and in vivo. Our work demonstrates the feasibility and promise of this approach for treating CD20(+) malignancies in a safe and more efficient manner. A phase I clinical trial using this approach in patients with relapsed indolent B-NHL is planned

    Pretargeted radioimmunotherapy using genetically engineered antibody-streptavidin fusion proteins for treatment of non-hodgkin lymphoma.

    Get PDF
    Purpose: Pretargeted radioimmunotherapy (PRIT) using streptavidin (SAv)-biotin technology can deliver higher therapeutic doses of radioactivity to tumors than conventional RIT. However, "endogenous" biotin can interfere with the effectiveness of this approach by blocking binding of radiolabeled biotin to SAv. We engineered a series of SAv FPs that downmodulate the affinity of SAv for biotin, while retaining high avidity for divalent DOTA-bis-biotin to circumvent this problem.Experimental Design: The single-chain variable region gene of the murine 1F5 anti-CD20 antibody was fused to the wild-type (WT) SAv gene and to mutant SAv genes, Y43A-SAv and S45A-SAv. FPs were expressed, purified, and compared in studies using athymic mice bearing Ramos lymphoma xenografts.Results: Biodistribution studies showed delivery of more radioactivity to tumors of mice pretargeted with mutant SAv FPs followed by (111)In-DOTA-bis-biotin [6.2 +/- 1.7% of the injected dose per gram (%ID/gm) of tumor 24 hours after Y43A-SAv FP and 5.6 +/- 2.2%ID/g with S45A-SAv FP] than in mice on normal diets pretargeted with WT-SAv FP (2.5 +/- 1.6%ID/g; P = 0.01). These superior biodistributions translated into superior antitumor efficacy in mice treated with mutant FPs and (90)Y-DOTA-bis-biotin [tumor volumes after 11 days: 237 +/- 66 mm(3) with Y43A-SAv, 543 +/- 320 mm(3) with S45A-SAv, 1129 +/- 322 mm(3) with WT-SAv, and 1435 +/- 212 mm(3) with control FP (P < 0.0001)].Conclusions: Genetically engineered mutant-SAv FPs and bis-biotin reagents provide an attractive alternative to current SAv-biotin PRIT methods in settings where endogenous biotin levels are high. Clin Cancer Res; 17(23); 7373-82. (C)2011 AACR
    corecore