19 research outputs found

    Recent progress on RF orbital angular momentum antennas

    Get PDF
    In the last five years or so, there has been a great interest in RF OAM to address the contradiction between the lack of wireless spectrum resources and the continually growing demands of the bandwidth. Recent developments and technological advancements in antenna design, material science, and integrated circuits have enabled miniaturized, multiple modes, tunable in radio frequency (RF) orbital angular momentum (OAM) antenna designs. From conventional methods such as spiral phase plate and reflector antenna to antenna array and metasurface, the working principle and structures are introduced. To improve the performance of RF OAM antennas, several innovative physical concepts have been explored for the designs of RF OAM antenna designs. In this paper, we present an up-to-date survey on the development of RF OAM antenna technologies. Open issues and development trends are explored as a source of inspiration towards the future better outcome of RF OAM antenna designs

    Phase-rotation-aided relay selection in two-way decode-and-forward relay networks

    No full text
    This paper proposes a relay selection scheme that aims to improve the end-to-end symbol error rate (SER) performance of a two-way relay network (TWRN). The TWRN consists of two single-antenna sources and multiple relays employing decode-and-forward (DF) protocol. It is shown that the SER performance is determined by the minimum decision distance (DD) observed in the TWRN. However, the minimum DD is likely to be made arbitrarily small by channel fading. To tackle this problem, a phase rotation (PR) aided relay selection (RS) scheme is proposed to enlarge the minium DD, which in turn improves the SER performance. The proposed PR based scheme rotates the phases of the transmitted symbols of one source and of the selected relay according to the channel state information, aiming for increasing all DDs to be above a desired bound. The lower bound is further optimized by using a MaxMin-RS criterion associated with the channel gains. It is demonstrated that the PR aided MaxMin-RS approach achieves full diversity gain and an improved array gain. Furthermore, compared with the existing DF based schemes, the proposed scheme allows more flexible relay antenna configurations

    Research on parametric modeling of structures of scraper conveyor

    No full text
    In view of problems of high repetition rate and low efficiency of structure design of scraper conveyor, parametric modeling of key components and complex assemblies of scraper conveyor were realized based on Pro/E 5.0 three-dimensional modeling software. Parametric modeling of key components of scraper conveyor mainly includes three steps: 3D model creation, design parameter determination and relationship setting. The parametric modeling process of key components was introduced by taking parametric modeling of drive sprocket as an example. Parametric modeling of complex assemblies of scraper conveyor was implemented based on Pro/Toolkit secondary development technology and Visual Studio 2008. Parametric modeling and virtual assembly process of complex assembly was introduced by taking parametric modeling of middle slot of scraper conveyor as an example. Rapid establishment, modification and precise sculpting of the key components and assemblies of scraper conveyor were achieved by modifying important geometric parameters, which provides basis for structural optimization of scraper conveyor

    Evaluation of Round Window Stimulation Performance in Otosclerosis Using Finite Element Modeling

    No full text
    Round window (RW) stimulation is a new type of middle ear implant’s application for treating patients with middle ear disease, such as otosclerosis. However, clinical outcomes show a substantial degree of variability. One source of variability is the variation in the material properties of the ear components caused by the disease. To investigate the influence of the otosclerosis on the performance of the RW stimulation, a human ear finite element model including middle ear and cochlea was established based on a set of microcomputerized tomography section images of a human temporal bone. Three characteristic changes of the otosclerosis in the auditory system were simulated in the FE model: stapedial annular ligament stiffness enlargement, stapedial abnormal bone growth, and partial fixation of the malleus. The FE model was verified by comparing the model-predicted results with published experimental measurements. The equivalent sound pressure (ESP) of RW stimulation was calculated via comparing the differential intracochlear pressure produced by the RW stimulation and the normal eardrum sound stimulation. The results show that the increase of stapedial annular ligament and partial fixation of the malleus decreases RW stimulation’s ESP prominently at lower frequencies. In contrast, the stapedial abnormal bone growth deteriorates RW stimulation’s ESP severely at higher frequencies

    Numerical Study and Optimization of a Novel Piezoelectric Transducer for a Round-Window Stimulating Type Middle-Ear Implant

    No full text
    Round window (RW) stimulation is a new application of middle ear implants for treating hearing loss, especially for those with middle ear disease. However, most reports on it are based on the use of the floating mass transducer (FMT), which was not originally designed for round window stimulation. The mismatch of the FMT’s diameter and the round window membrane’s diameter and the uncontrollable preload of the transducer, leads to a high variability in its clinical outcomes. Accordingly, a new piezoelectric transducer for the round-window-stimulating-type middle ear implant is proposed in this paper. The transducer consists of a piezoelectric stack, a flextensional amplifier, a coupling rod, a salver, a plate, a titanium housing and a supporting spring. Based on a constructed coupling finite element model of the human ear and the transducer, the influences of the transducer design parameters on its performance were analyzed. The optimal structure of the supporting spring, which determines the transducer’s resonance frequency, was ascertained. The results demonstrate that our designed transducer generates better output than the FMT, especially at low frequency. Besides this, the power consumption of the transducer was significantly decreased compared with a recently reported RW-stimulating piezoelectric transducer

    Design of tension testing system of heavy scraper conveyor

    No full text
    In view of problem that tension of scraper conveyor is difficult to effectively monitor in running process, a tension testing system of scraper conveyor based on finite element analysis was designed. The sensitive spot of tension between scraper and scraper chain was found by analyzing the force relation between the scraper and scraper chain. The tension of weak coupling point between the scraper and the chain was measured by embedded strain sensor in several scrapers, so as to obtain tension distribution of the scraper chain. The system realizes dynamic monitoring of tension of scraper conveyor chain

    Influence of middle ear disorder in round-window stimulation using a finite element human ear model

    No full text
    The aim of this work was to study the effect of middle ear disorder on round window (RW) stimulation, so as to provide references for the optimal design of RW stimulation type middle ear implants (MEIs). Methods: A human ear finite-element model was built by reverse engineering technique based on micro-computed tomography scanning images of human temporal bone, and was validated by three sets of comparisons with experimental data. Then, based on this model, typical disorders in otosclerosis and otitis media were simulated. Finally, their influences on the RW stimulation were analyzed by comparison of the displacements of the basilar membrane. Results: For the otosclerosis, the stapedial abnormal bone growth severely deteriorated the equivalent sound pressure of the RW stimulation at higher frequencies, while the hardening of ligaments and tendons prominently decreased the RW stimulation at lower frequencies. Besides, among the hardening of the studied tissues, the influence of the stapedial annular ligament’s hardening was much more significant. For the otitis media, the round window membrane (RWM)’s thickening mainly decreased the RW stimulation’s performance at lower frequencies. When the elastic modulus’ reduction of the RWM was considered at the same time especially for the acute otitis media, it would raise the lower-frequency performance of the RW stimulation. Conclusions: The influence of the middle ear disorder on the RW stimulation is considerable and variable, it should be considered during the design of the RW stimulation type MEIs

    Concept and Evaluation of a New Piezoelectric Transducer for an Implantable Middle Ear Hearing Device

    No full text
    Implantable middle ear hearing devices (IMEHDs) have been developed as a new technology to overcome the limitations of conventional hearing aids. The piezoelectric cantilever transducers currently used in the IMEHDs have the advantages of low power consumption and ease of fabrication, but generate less high-frequency output. To address this problem, we proposed and designed a new piezoelectric transducer based on a piezoelectric stack for the IMEHD. This new transducer, attached to the incus body with a coupling rod, stimulates the ossicular chain in response to the expansion-and-contraction of its piezoelectric stack. To test its feasibility for hearing loss compensation, a bench testing of the transducer prototype and a temporal bone experiment were conducted, respectively. Bench testing results showed that the new transducer did have a broad frequency bandwidth. Besides, the transducer was found to have a low total harmonic distortion (<0.75%) in all frequencies, and small release time (1 ms). The temporal bone experiment further proved that the transducer has the capability to produce sufficient vibrations to compensate for severe sensorineural hearing loss, especially at high frequencies. This property benefits the treatment of the most common sloping high-frequency sensorineural hearing loss. To produce a 100 dB SPL equivalent sound pressure at 1 kHz, its power consumption is 0.49 mW, which is low enough for the transducer to be utilized in the IMEHD

    Generation of Orbital Angular Momentum Beam With Circular Polarization Ceramic Antenna Array

    No full text

    A Feature Extraction Method Using Auditory Nerve Response for Collapsing Coal-Gangue Recognition

    No full text
    To intelligentize the top-coal caving’s process, many data-driven coal-gangue recognition techniques have been proposed recently. However, practical applications of these techniques are hindered by coal mine underground’s high background noise and complex environment. Considering that workers distinguish coal and gangue by hearing the impact sounds on the hydraulic support, we proposed a novel feature extraction method based on an auditory nerve (AN) response model simulating the human auditory system. Firstly, vibration signals were measured by an acceleration sensor mounted on the back of the hydraulic support’s tail beam, and then they were converted into acoustic pressure signals. Secondly, an AN response model of different characteristic frequencies was applied to process these signals, whose output constituted the auditory spectrum for feature extraction. Meanwhile, a feature selection method integrated with variance was used to reduce redundant information of the original features. Finally, a support vector machine was employed as the classifier model in this work. The proposed method was tested and evaluated on experimental datasets collected from the Tashan Coal Mine in China. In addition, its recognition accuracy was compared with other coal-gangue recognition methods based on commonly used features. The results show that our proposed method can reach a superior recognition accuracy of 99.23% and presents better generalization ability
    corecore