52 research outputs found
Sources of nitrate in a heavily nitrogen pollution bay in Beibu Gulf, as identified using stable isotopes
Eutrophication, mainly caused by the oversupply of inorganic nitrogen and phosphate, has increased and become a serious environmental problem in the coastal bays of Beibu Gulf, a newly developing industry and port in South China. However, the sources of nitrate are poorly understood in the gulf. In this study, nitrate dual isotopes (δ15N-NO3- and δ18O-NO3-) and ammonium isotopes (δ15N-NH4+) were measured during the rainy season to identify the nitrate sources and elucidate their biogeochemical processes in Xi Bay, a semi-enclosed bay that is strongly affected by human activities in the Beibu Gulf. The results showed that a high dissolved inorganic nitrogen (DIN, 10.24-99.09 µmol L-1) was observed in Xi Bay, particularly in the bay mouth. The concentrations of DIN in the bay were 1.5 times higher than that in Qinzhou Bay and 1.7 times than that in Tieshangang Bay, which mainly influenced by the intensive human activities (i.e., industrial and port activities). In addition, lower values of δ15N-NO3- and δ18O-NO3- and higher values of δ15N-NH4+ were observed in the upper bay, suggesting that microbial nitrification occurs in the upper bay, which was the dominant nitrate source in the upper bay (39%). In addition to nitrification, external sources, including sewage and manure (33%), soil N (15%) and fertilizer (11%), contributed to the higher nutrients in the upper bay. In the lower bay, severe nitrogen pollution led to a weaker impact of biological processes on isotopic fractionation, although a high Chl a level (average of 7.47 µg L-1) was found in this region. The heavy nitrate pollution in the lower bay mainly originated from sewage and manure (54%), followed by soil N (26%) and fertilizer (17%). The contribution of the nitrate source from atmospheric deposition was relatively low in the bay (<3%). This study suggests that biogeochemical processes have little impact on nitrate dual isotopes under heavy nitrogen pollution, and isotopes are an ideal proxy for tracing nitrogen sources
Synthesis of 3-Substituted Isocoumarin Derivatives via CuI-Catalyzed Reaction of o-Bromobenzamides with 1,3-Diketones
Assembly of 3-Substituted Isocoumarins via a CuI-Catalyzed Domino Coupling/Addition/Deacylation Process
CuCl-catalyzed ortho trifluoromethylation of arenes and heteroarenes with a pivalamido directing group
Influence of Rising of a River Water Level on Groundwater Flow and Stability of a Landslide
Spatial cluster and Heterogeneity Research on Energy-Related Carbon Emissions in Districts and Counties of Guangdong Province
Energy-related carbon emissions in districts and counties of Guangdong province from 2005 to 2016 are researched based on spatial econometrics method in this article, and significance cluster area and heterogeneity area are precise pinpointed. Conclusions are as follows: (1) total carbon emissions and per capita carbon emissions exist significance global spatial autocorrelation in the year 2005-2016, and formed significance high-high cluster area in districts and counties of Guangzhou city, Shenzhen city and Dongguan city. It also formed three significance low-low cluster areas in districts and counties of eastern, western and northern of Guangdong province. Low-high heterogeneity area and high -low heterogeneity area often appears in the scope of high-high cluster area and low-low cluster area. (2)Carbon emission intensity not exist significance global spatial autocorrelation, but exist significance cluster area and heterogeneity area in the ecological development areas of eastern, western and northern of Guangdong province. In the end, the paper puts forward the regional and detailed policy recommendations for efficient carbon emission reduction for each cluster type region: carbon high-high cluster areas are priority reduce emissions area, heighten energy saving technology and optimize industrial structure are two grippers to reduce emissions. Low - low carbon emissions concentrated area in western of Guangdong should primarily develop high and new technology industry. Low low carbon emissions concentrated areas and high - high carbon emissions intensity concentrated area for eastern and northern of Guangdong province should try hard to wins ecological compensation at the same time focus on developing ecological tourism
L-Carnitine Reduces Myocardial Oxidative Stress and Alleviates Myocardial Ischemia-Reperfusion Injury by Activating Nuclear Transcription-Related Factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) Signaling Pathway
Substrate-Controlled Transformation of Azobenzenes to Indazoles and Indoles via Rh(III)-Catalysis
Monthly Electricity Consumption Characteristics of Industries in Guangzhou and Optimized Electricity Management Based on Geographical Detector
To implement demand-side management (DSM) to specific industries, this paper analyzed electricity consumption characteristics of each industry within 60 months from 2013 to 2017, depending on the geographical detector and the electricity consumption complementarity model. On this basis, it explored the optimal management path of industry electricity consumption from the perspective of industry and time through scenario analysis. In light of the monthly electricity consumption characteristics of different industries in Guangzhou, the main driving sub-industries for electricity consumption in the industry were identified, and the electricity consumption combinations that can offset the fluctuation in electricity consumption were employed. The research finds that optimizing the industrial electricity consumption structure and upgrading the consumption time management considering the electricity consumption level of Guangzhou in 2017 can reduce the monthly peak–valley difference of Guangzhou electricity consumption by about 225 million kW·h. In the future, the monthly electricity consumption forecast of the industry, combined with the analysis of electricity complementarity, can be used to calculate the industry’s electricity dispatching potential, so as to provide data support for the improvement in demand-side management of electricity
Spatial cluster and Heterogeneity Research on Energy-Related Carbon Emissions in Districts and Counties of Guangdong Province
Energy-related carbon emissions in districts and counties of Guangdong province from 2005 to 2016 are researched based on spatial econometrics method in this article, and significance cluster area and heterogeneity area are precise pinpointed. Conclusions are as follows: (1) total carbon emissions and per capita carbon emissions exist significance global spatial autocorrelation in the year 2005-2016, and formed significance high-high cluster area in districts and counties of Guangzhou city, Shenzhen city and Dongguan city. It also formed three significance low-low cluster areas in districts and counties of eastern, western and northern of Guangdong province. Low-high heterogeneity area and high -low heterogeneity area often appears in the scope of high-high cluster area and low-low cluster area. (2)Carbon emission intensity not exist significance global spatial autocorrelation, but exist significance cluster area and heterogeneity area in the ecological development areas of eastern, western and northern of Guangdong province. In the end, the paper puts forward the regional and detailed policy recommendations for efficient carbon emission reduction for each cluster type region: carbon high-high cluster areas are priority reduce emissions area, heighten energy saving technology and optimize industrial structure are two grippers to reduce emissions. Low - low carbon emissions concentrated area in western of Guangdong should primarily develop high and new technology industry. Low low carbon emissions concentrated areas and high - high carbon emissions intensity concentrated area for eastern and northern of Guangdong province should try hard to wins ecological compensation at the same time focus on developing ecological tourism
- …
