26 research outputs found

    Enhance immune response to H9 AIV DNA vaccine based on polygene expression and DGL nanoparticle encapsulation

    No full text
    ABSTRACT: DNA vaccination has great potential to treat or prevent avian influenza pandemics, but the technique may be limited by low immunogenicity and gene delivery in clinical testing. Here, to improve the immune efficacy of DNA vaccines against avian influenza, we prepared and tested the immunogenicity of 4 recombinant DNA vaccines containing 2 or 3 AIV antigens. The results revealed that chickens and mice immunized with plasmid DNA containing 3 antigens (HA gene from H9N2, and NA and HA genes from H5N1) exhibited a robust immune response than chickens and mice immunized with plasmid DNAs containing 2 antigenic genes. Subsequently, this study used pβH9N1SH5 as a model antigen to study the effect of dendritic polylysine (DGL) nanoparticles as a gene delivery system and adjuvant on antigen-specific immunity in mice models. At a ratio of 1:3 DGL/pβH9N1SH5 (w/w), the pβH9N1SH5/DGL NPs showed excellent physical and chemical properties, induced higher levels of HI antibodies, and larger CD3+/CD4+ T lymphocyte and CD3+/CD8+ T lymphocyte population, as well as the production of cytokines, namely, interferon (IFN)-γ, interleukin (IL)-2 compared with the naked pβH9N1SH5. Therefore, multiantigen gene expression methods using DGL as a delivery system may have broad application prospects in gene therapy

    Epidemiological analysis of HTLV-1 and HTLV-2 infection among different population in Central China.

    Get PDF
    BACKGROUND: HTLV-1 and HTLV-2 are retroviruses linked etiologically to various human diseases, and both of them can be transmitted by vertical route, sexual intercourse, blood transfusion and intravenous drug use. Recently, some HTLV-infected cases have been reported and this virus is mainly present in the Southeast coastal areas in China, but has not been studied for the people in Central China. OBJECTIVES: To know the epidemiologic patterns among different population samples in Central China and further identify risk factor for HTLV-1 and HTLV-2 infection. METHODS: From January 2008 to December 2011, 5480 blood samples were screened for HTLV-1/2 antibodies by using enzyme immunoassay, followed by Western Blot. RESULTS: The prevalence of HTLV-1 and HTLV-2 was found with infection rates 0.13% and 0.05% among all population samples for HTLV-1 and HTLV-2, respectively. The highest percentages of infection, 0.39% and 0.20%, were found in the high risk group, while only 0.06% and 0.03% in the blood donor group. There was only one case of HTLV-1 infection (0.11%) among patients with malignant hematological diseases. Of seven HTLV-1 positive cases, six were co-infected with HBV, two with HCV and one with HIV. Among three HTLV-2 positive individuals all were co-infected with HBV, one with HCV. CONCLUSIONS: HTLV-1 and HTLV-2 have been detected in the Central China at low prevalence, with the higher infection rate among high risk group. It was also found that co-infection of HTLV-1/2 with HIV and HBV occurred, presumably due to their similar transmission routes. HTLV-1/2 antibody screen among certain population would be important to prevent the spread of the viruses
    corecore