8,091 research outputs found
Constraints on the Abundance of Highly Ionized Proto-Cluster Regions from the Absence of Large Voids in the Lyman Alpha Forest
Energetic feedback processes during the formation of galaxy clusters may have
heated and ionized a large fraction of the intergalactic gas in proto-cluster
regions. When such a highly ionized hot ``super-bubble'' falls along the
sightline to a background quasar, it would be seen as a large void, with little
or no absorption, in the Lyman alpha forest. We examine the spectra of 137
quasars in the Sloan Digital Sky Survey, to search for such voids, and find no
clear evidence of their existence. The size distribution of voids in the range
5-70 Angstrom (corresponding to physical sizes of approximately 3-35 comoving
Mpc/h) is consistent with the standard model for the Lyman alpha forest without
additional hot bubbles. We adapt a physical model for HII bubble growth during
cosmological reionization (Furlanetto, Zaldarriaga and Hernquist 2004), to
describe the expected size-distribution of hot super-bubbles at redshift around
z = 3. This model incorporates the conjoining of bubbles around individual
neighboring galaxies. Using the non-detection of voids, we find that models in
which the volume filling factor of hot bubbles exceeds approximately 20 percent
at z=3 can be ruled out, primarily because they overproduce the number of large
(40-50 Angstrom) voids. We conclude that any pre-heating mechanism that
explains galaxy cluster observations must avoid heating the low-density gas in
the proto-cluster regions, either by operating relatively recently (z<3) or by
depositing entropy in the high-density regions.Comment: submitted to ApJ, 9 emulateapj pages with 3 figure
Upper critical field and thermally activated flux flow in single crystalline TlRbFeSe
The upper critical field of
TlRbFeSe single crystals has been determined by
means of measuring the electrical resistivity in both a pulsed magnetic field
(60T) and a DC magnetic field (14T). It is found that
linearly increases with decreasing temperature for ,
reaching T. On the
other hand, a larger with a strong convex curvature
is observed for ((18K)60T). This compound shows a moderate anisotropy of the upper
critical field around , but decreases with decreasing temperature.
Analysis of the upper critical field based on the Werthamer-Helfand-Hohenberg
(WHH) method indicates that is orbitally limited for
, but the effect of spin paramagnetism may play an
important role on the pair breaking for . All these
experimental observations remarkably resemble those of the iron pnictide
superconductors, suggesting a unified scenario for the iron-based
superconductors. Moreover, the superconducting transition is significantly
broadened upon applying a magnetic field, indicating strong thermal fluctuation
effects in the superconducting state of
TlRbFeSe. The derived thermal activation energy
for vortex motion is compatible with those of the 1111-type iron pnictides.Comment: 7 pages, 6 figure
Nodeless superconductivity in the cage-type superconductor Sc5Ru6Sn18 with preserved time-reversal symmetry
We report the single-crystal synthesis and detailed investigations of the
cage-type superconductor Sc5Ru6Sn18, using powder x-ray diffraction (XRD),
magnetization, specific-heat and muon-spin relaxation (muSR) measurements.
Sc5Ru6Sn18 crystallizes in a tetragonal structure (space group I41/acd) with
the lattice parameters a = 1.387(3) nm and c = 2.641(5) nm. Both DC and AC
magnetization measurements prove the type-II superconductivity in Sc5Ru6Sn18
with Tc = 3.5(1) K, a lower critical field H_c1 (0) = 157(9) Oe and an upper
critical field, H_c2 (0) = 26(1) kOe. The zero-field electronic specific-heat
data are well fitted using a single-gap BCS model, with superconducting gap =
0.64(1) meV. The Sommerfeld constant varies linearly with the applied magnetic
field, indicating s-wave superconductivity in Sc5Ru6Sn18. Specific-heat and
transverse-field (TF) muSR measurements reveal that Sc5Ru6Sn18 is a
superconductor with strong electron-phonon coupling, with TF-muSR also
suggesting the single-gap s-wave character of the superconductivity.
Furthermore, zero-field muSR measurements do not detect spontaneous magnetic
fields below Tc, hence implying that time-reversal symmetry is preserved in
Sc5Ru6Sn18.Comment: 23 pages, 11 figure
Exclusive Lambda_b -> Lambda l^+ l^- decay in two Higgs doublet model
Rare Lambda_b -> Lambda l^+ l^- decay is investigated in framework of general
two Higgs doublet model, in which a new source of CP violation exists (model
III). The polarization parameter, CP asymmetry and decay width are calculated.
It is shown that CP asymmetry is a very sensitive tool for establishing model
III.Comment: 16 pages, 3 figures, LaTeX formatte
- …