3,495 research outputs found
Culture Counts: Examinations of Recent Applications of the Penn Resiliency Program or, Toward a Rubric for Examining Cultural Appropriateness of Prevention Programming
It is imperative that researchers pay close attention to the influences of culture on mental health, and acknowledge a cultural context of illness and change when designing prevention programming. Researchers E. V. Cardemil, K. J. Reivich, and M. E. P. Seligman (2002) and D. L. Yu and M. E. P. Seligman (2002) have made attempts at adapting the existing Penn Resiliency Program (PRP) for culturally appropriate use cross-culturally and interculturally. The success of these modifications is discussed within a framework of guidelines designed to remind scientists how much culture counts. Finally, informative resources and a rubric are shared with prevention scientists for use in future development of culturally appropriate prevention programming
BeppoSAX LECS background subtraction techniques
We present 3 methods for the subtraction of non-cosmic and unresolved cosmic
backgrounds observed by the Low-Energy Concentrator Spectrometer (LECS)
on-board BeppoSAX. Removal of these backgrounds allows a more accurate modeling
of the spectral data from point and small-scale extended sources. At high
(>|25| degree) galactic latitudes, subtraction using a standard background
spectrum works well. At low galactic latitudes, or in complex regions of the
X-ray sky, two alternative methods are presented. The first uses counts
obtained from two semi-annuli near the outside of the LECS field of view to
estimate the background at the source location. The second method uses ROSAT
Position Sensitive Proportional Counter (PSPC) all-sky survey data to estimate
the LECS background spectrum for a given pointing position. A comparison of the
results from these methods provides an estimate of the systematic
uncertainties. For high galactic latitude fields, all 3 methods give 3 sigma
confidence uncertainties of <0.9 10^-3 count/s (0.1-10 keV), or <1.5 10^-3
count/s (0.1-2 keV). These correspond to 0.1-2.0 keV fluxes of 0.7-1.8 and
0.5-1.1 10^-13 erg/cm2/s for a power-law spectrum with a photon index of 2 and
photoelectric absorption of 3 10^20 and 3 10^21 atom/cm2, respectively. At low
galactic latitudes, or in complex regions of the X-ray sky, the uncertainties
are a factor ~2.5 higher.Comment: 13 pages. Accepted for publication in A&A
Constraints on the distance to SGR 1806-20 from HI absorption
The giant flare detected from the magnetar SGR 1806-20 on 2004 December 27
had a fluence more than 100 times higher than the only two other SGR flares
ever recorded. Whereas the fluence is independent of distance, an estimate for
the luminosity of the burst depends on the source's distance, which has
previously been argued to be ~15 kpc. The burst produced a bright radio
afterglow, against which Cameron et al. (2005) have measured an HI absorption
spectrum. This has been used to propose a revised distance to SGR 1806-20 of
between 6.4 and 9.8 kpc. Here we analyze this absorption spectrum, and compare
it both to HI emission data from the Southern Galactic Plane Survey and to
archival 12-CO survey data. We confirm ~6 kpc, as a likely lower limit on the
distance to SGR 1806-20, but argue that it is difficult to place an upper limit
on the distance to SGR 1806-20 from the HI data currently available. The
previous value of ~15 kpc thus remains the best estimate of the distance to the
source.Comment: 3 pages, 1 embedded EPS figure. Added sentences to end of Abstract
and Conclusion, clarifying that most likely distance is 15 kpc. ApJ Letters,
in pres
Ultraluminous X-ray Sources Powered by Radiatively Efficient Two-Phased Super-Eddington Accretion onto Stellar Mass Black holes
The radiation spectra of many of the brightest ultraluminous X-ray sources
(ULXs) are dominated by a hard power law component, likely powered by a hot,
optically thin corona that Comptonizes soft seed photons emitted from a cool,
optically thick black hole accretion disk. Before its dissipation and
subsequent conversion into coronal photon power, the randomized gravitational
binding energy responsible for powering ULX phenomena must separate from the
mass of its origin by a means other than, and quicker than, electron
scattering-mediated radiative diffusion. Therefore, the release of accretion
power in ULXs is not necessarily subject to Eddington-limited photon trapping,
as long as it occurs in a corona. Motivated by these basic considerations, we
present a model of ULXs powered by geometrically thin accretion onto stellar
mass black holes. We argue that the radiative efficiency of the flow remains
high if the corona is magnetized or optically thin and the majority of the
accretion power escapes in the form of radiation rather than an outflow. Within
the context of the current black hole X-ray binary paradigm, our ULX model may
be viewed as an extension of the very high state observed in Galactic sources.
(abridged)Comment: 11 page
LISA data analysis I: Doppler demodulation
The orbital motion of the Laser Interferometer Space Antenna (LISA) produces
amplitude, phase and frequency modulation of a gravitational wave signal. The
modulations have the effect of spreading a monochromatic gravitational wave
signal across a range of frequencies. The modulations encode useful information
about the source location and orientation, but they also have the deleterious
affect of spreading a signal across a wide bandwidth, thereby reducing the
strength of the signal relative to the instrument noise. We describe a simple
method for removing the dominant, Doppler, component of the signal modulation.
The demodulation reassembles the power from a monochromatic source into a
narrow spike, and provides a quick way to determine the sky locations and
frequencies of the brightest gravitational wave sources.Comment: 5 pages, 7 figures. References and new comments adde
Community Emergency Management During the 2005 Ambae Eruption, Vanuatu, SW Pacific.
No abstract availabl
Space missions to detect the cosmic gravitational-wave background
It is thought that a stochastic background of gravitational waves was
produced during the formation of the universe. A great deal could be learned by
measuring this Cosmic Gravitational-wave Background (CGB), but detecting the
CGB presents a significant technological challenge. The signal strength is
expected to be extremely weak, and there will be competition from unresolved
astrophysical foregrounds such as white dwarf binaries. Our goal is to identify
the most promising approach to detect the CGB. We study the sensitivities that
can be reached using both individual, and cross-correlated pairs of space based
interferometers. Our main result is a general, coordinate free formalism for
calculating the detector response that applies to arbitrary detector
configurations. We use this general formalism to identify some promising
designs for a GrAvitational Background Interferometer (GABI) mission. Our
conclusion is that detecting the CGB is not out of reach.Comment: 22 pages, 7 figures, IOP style, References Adde
An inner ring and the micro lensing toward the Bulge
All current Bulge-Disk models for the inner Galaxy fall short of reproducing
self-consistently the observed micro-lensing optical depth by a factor of two
(). We show that the least mass-consuming way to increase the
optical depth is to add density roughly half-way the observer and the highest
micro-lensing-source density. We present evidence for the existence of such a
density structure in the Galaxy: an inner ring, a standard feature of barred
galaxies. Judging from data on similar rings in external galaxies, an inner
ring can contribute more than 50% of a pure Bulge-Disk model to the
micro-lensing optical depth. We may thus eliminate the need for a small viewing
angle of the Bar. The influence of an inner ring on the event-duration
distribution, for realistic viewing angles, would be to increase the fraction
of long-duration events toward Baade's window. The longest events are expected
toward the negative-longitude tangent point at -22\degr . A properly
sampled event-duration distribution toward this tangent point would provide
essential information about viewing angle and elongation of the over-all
density distribution in the inner Galaxy.Comment: 9 pages, 7(15) figs, LaTeX, AJ (accepted
- âŠ