39 research outputs found

    Prospective Evaluation of the Influence of Iterative Reconstruction on the Reproducibility of Coronary Calcium Quantification in Reduced Radiation Dose 320 Detector Row CT.

    Get PDF
    BACKGROUND: Coronary artery calcium (CAC) predicts coronary heart disease events and is important for individualized cardiac risk assessment. This report assesses the interscan variability of CT for coronary calcium quantification using image acquisition with standard and reduced radiation dose protocols and whether the use of reduced radiation dose acquisition with iterative reconstruction (IR; reduced-dose/IR ) allows for similar image quality and reproducibility when compared to standard radiation dose acquisition with filtered back projection (FBP; standard-dose/FBP ) on 320-detector row computed tomography (320-CT). METHODS: 200 consecutive patients (60 ± 9 years, 59% male) prospectively underwent two standard- and two reduced-dose acquisitions (800 total scans, 1600 reconstructions) using 320 slice CT and 120 kV tube voltage. Automated tube current modulation was used and for reduced-dose scans, prescribed tube current was lowered by 70%. Image noise and Agatston scores were determined and compared. RESULTS: Regarding stratification by Agatston score categories (0, 1-10, 11-100, 101-400, \u3e400), reduced-dose/IR versus standard-dose/FBP had excellent agreement at 89% (95% CI: 86-92%) with kappa 0.86 (95% CI: 0.81-0.90). Standard-dose/FBP rescan agreement was 93% (95% CI: 89-96%) with kappa = 0.91 (95% CI: 0.86-0.95) while reduced-dose/IR rescan agreement was similar at 91% (95% CI: 87-94%) with kappa 0.88 (95% CI: 0.83-0.93). Image noise was significantly higher but clinically acceptable for reduced-dose/IR (18 Hounsfield Unit [HU] mean) compared to standard-dose/FBP (16 HU; p \u3c 0.0001). Median radiation exposure was 74% lower for reduced- (0.37 mSv) versus standard-dose (1.4 mSv) acquisitions. CONCLUSION: Rescan agreement was excellent for reduced-dose image acquisition with iterative reconstruction and standard-dose acquisition with filtered back projection for the quantification of coronary calcium by CT. These methods make it possible to reduce radiation exposure by 74%. CLINICAL TRIAL REGISTRATION: URL: https://clinicaltrials.gov/ct2/show/NCT01621594. UNIQUE IDENTIFIER: NCT01621594

    Concordance and diagnostic accuracy of vasodilator stress cardiac MRI and 320-detector row coronary CTA

    Get PDF
    Vasodilator stress cardiac magnetic resonance (CMR) detects ischemia whereas coronary CT angiography (CTA) detects atherosclerosis. The purpose of this study was to determine concordance and accuracy of vasodilator stress CMR and coronary CTA in the same subjects. We studied 151 consecutive subjects referred to detect or exclude suspected obstructive coronary artery disease (CAD) in patients without known disease or recurrent stenosis or ischemia in patients with previously treated CAD. Vasodilator stress CMR was performed on a 1.5 T scanner. CTA was performed on a 320-detector row system. Subjects were followed for cardiovascular events and downstream diagnostic testing. Subjects averaged 56 ± 12 years (60 % male), and 62 % had intermediate pre-test probability for obstructive CAD. Follow-up averaged 450 ± 115 days and was 100 % complete. CMR and CTA agreed in 92 % of cases (Îș 0.81, p < 0.001). The event-free survival was 97 % for non-ischemic and 39 % for ischemic CMR (p < 0.0001). The event-free survival was 99 % for non-obstructive and 36 % for obstructive CTA (p < 0.0001). Using a reference standard including quantitative invasive angiography or major cardiovascular events, CMR and CTA had respective sensitivities of 93 and 98 %; specificities of 96 and 96 %; positive predictive values of 91 and 91 %; negative predictive values of 97 and 99 %; and accuracies of 95 and 97 %. Non-ischemic vasodilator stress CMR or non-obstructive coronary CTA were highly concordant and each confer an excellent prognosis. CMR and CTA are both accurate for assessment of obstructive CAD in a predominantly intermediate risk population
    corecore