102 research outputs found
Influence of wiring cost on the large-scale architecture of human cortical connectivity
In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (‘random’), connection length preserving (‘spatial’), and connection length optimised (‘reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain
Patients with rheumatoid arthritis have an altered circulatory aggrecan profile
<p>Abstract</p> <p>Background</p> <p>Rheumatoid arthritis (RA) is a chronic auto-immune disease with extensive articular cartilage destruction. Aggrecan depletion, mediated by aggrecanases is one of the first signs of early cartilage erosion. We investigated, whether measurement of aggrecan and fragments thereof in serum, could be used as biomarkers for joint-disease in RA patients and furthermore characterized the fragments found in the circulation.</p> <p>Methods</p> <p>The study consisted of 38 patients, 12 males (62.2 ± 16.0 years) and 26 females (59.8 ± 20.7 years) diagnosed with RA: 41.5 ± 27.5 mm/h erythrocyte sedimentation rate (ESR), 38.4 ± 34.7 mg/ml C-reactive protein (CRP) and 4.8 ± 1.7 disease activity score (DAS) and 108 healthy age-matched controls. Aggrecan levels were measured using two immunoassays, i.e. the <sup>374</sup>ARGSVI-G2 sandwich ELISA measuring aggrecanase-mediated aggrecan degradation and the G1/G2 sandwich assay, detecting aggrecan molecules containing G1 and/or G2 (total aggrecan) We further characterized serum samples by western blots, by using monoclonal antibodies F-78, binding to G1 and G2, or by BC-3, detecting the aggrecanase-generated N-terminal <sup>374</sup>ARGSVI neo-epitope.</p> <p>Results</p> <p>Total aggrecan levels in RA patients were significantly decreased from 824.8 ± 31 ng/ml in healthy controls to 570.5 ± 30 ng/ml (31% decrease, P < 0.0001), as measured by the G1/G2 ELISA. Western blot analysis with F-78 showed one strong band at 10 kDa, and weaker bands at 25 and 45 kDa in both healthy controls and RA patients. In contrast, staining for aggrecanase-activity revealed only one strong band in RA patients of 45 kDa.</p> <p>Conclusion</p> <p>This is the first study, which characterizes different aggrecan fragments in human serum. The data strongly suggests that total aggrecan levels, i.e. aggrecan molecules containing G1 and/or G2 are lower in RA patients, and that RA patients have at least one specific subpopulation of aggrecan fragments, namely aggrecanse generated <sup>374</sup>ARGSVI fragments. Further clinical studies are needed to investigate the potential of G1/G2 as a structure-related biochemical marker in destructive joint-diseases.</p
Can Motivation Normalize Working Memory and Task Persistence in Children with Attention-Deficit/Hyperactivity Disorder? The Effects of Money and Computer-Gaming
Visual-spatial Working Memory (WM) is the most impaired executive function in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Some suggest that deficits in executive functioning are caused by motivational deficits. However, there are no studies that investigate the effects of motivation on the visual-spatial WM of children with- and without ADHD. Studies examining this in executive functions other than WM, show inconsistent results. These inconsistencies may be related to differences in the reinforcement used. The effects of different reinforcers on WM performance were investigated in 30 children with ADHD and 31 non-ADHD controls. A visual-spatial WM task was administered in four reinforcement conditions: Feedback-only, 1 euro, 10 euros, and a computer-game version of the task. In the Feedback-only condition, children with ADHD performed worse on the WM measure than controls. Although incentives significantly improved the WM performance of children with ADHD, even the strongest incentives (10 euros and Gaming) were unable to normalize their performance. Feedback-only provided sufficient reinforcement for controls to reach optimal performance, while children with ADHD required extra reinforcement. Only children with ADHD showed a decrease in performance over time. Importantly, the strongest incentives (10 euros and Gaming) normalized persistence of performance in these children, whereas 1 euro had no such effect. Both executive and motivational deficits give rise to visual-spatial WM deficits in ADHD. Problems with task-persistence in ADHD result from motivational deficits. In ADHD-reinforcement studies and clinical practice (e.g., assessment), reinforcement intensity can be a confounding factor and should be taken into account. Gaming can be a cost-effective way to maximize performance in ADHD
DRD4 Polymorphism Moderates the Effect of Alcohol Consumption on Social Bonding
Development of interpersonal relationships is a fundamental human motivation, and behaviors facilitating social bonding are prized. Some individuals experience enhanced reward from alcohol in social contexts and may be at heightened risk for developing and maintaining problematic drinking. We employed a 3 (group beverage condition) ×2 (genotype) design (N = 422) to test the moderating influence of the dopamine D4 receptor gene (DRD4 VNTR) polymorphism on the effects of alcohol on social bonding. A significant gene x environment interaction showed that carriers of at least one copy of the 7-repeat allele reported higher social bonding in the alcohol, relative to placebo or control conditions, whereas alcohol did not affect ratings of 7-absent allele carriers. Carriers of the 7-repeat allele were especially sensitive to alcohol's effects on social bonding. These data converge with other recent gene-environment interaction findings implicating the DRD4 polymorphism in the development of alcohol use disorders, and results suggest a specific pathway by which social factors may increase risk for problematic drinking among 7-repeat carriers. More generally, our findings highlight the potential utility of employing transdisciplinary methods that integrate genetic methodologies, social psychology, and addiction theory to improve theories of alcohol use and abuse
First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA
The NOvA experiment has seen a 4.4σ signal of ν̄e appearance in a 2 GeV ν̄μ beam at a distance of 810 km. Using 12.33×1020 protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ν̄μ→ν̄e candidates with a background of 10.3 and 102 ν̄μ→ν̄μ candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm322|=2.48-0.06+0.11×10-3 eV2/c4 and sin2θ23 in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δCP=π/2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ23 values in the upper octant by 1.6σ
First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA
The NOvA experiment has seen a
4.4
σ
signal of
¯
ν
e
appearance in a 2 GeV
¯
ν
μ
beam at a distance of 810 km. Using
12.33
×
10
20
protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27
¯
ν
μ
→
¯
ν
e
candidates with a background of 10.3 and 102
¯
ν
μ
→
¯
ν
μ
candidates. This new antineutrino data are combined with neutrino data to measure the parameters
|
Δ
m
2
32
|
=
2.4
8
+
0.11
−
0.06
×
10
−
3
eV
2
/
c
4
and
sin
2
θ
23
in the ranges from (0.53–0.60) and (0.45–0.48) in the normal neutrino mass hierarchy. The data exclude most values near
δ
C
P
=
π
/
2
for the inverted mass hierarchy by more than
3
σ
and favor the normal neutrino mass hierarchy by
1.9
σ
and
θ
23
values in the upper octant by
1.6
σ
Measurement of neutrino-induced neutral-current coherent π0 production in the NOvA near detector
The cross section of neutrino-induced neutral-current coherent π0 production on a carbon-dominated target is measured in the NOvA near detector. This measurement uses a narrow-band neutrino beam with an average neutrino energy of 2.7 GeV, which is of interest to ongoing and future long-baseline neutrino oscillation experiments. The measured, flux-averaged cross section is σ=13.8±0.9(stat)±2.3(syst)×10−40cm2/nucleus, consistent with model prediction. This result is the most precise measurement of neutral-current coherent π0 production in the few-GeV neutrino energy region
Neutrinos
229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb
Space Telescope (JWST), as determined from the six month commissioning period.
We summarize the performance of the spacecraft, telescope, science instruments,
and ground system, with an emphasis on differences from pre-launch
expectations. Commissioning has made clear that JWST is fully capable of
achieving the discoveries for which it was built. Moreover, almost across the
board, the science performance of JWST is better than expected; in most cases,
JWST will go deeper faster than expected. The telescope and instrument suite
have demonstrated the sensitivity, stability, image quality, and spectral range
that are necessary to transform our understanding of the cosmos through
observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures;
https://iopscience.iop.org/article/10.1088/1538-3873/acb29
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies
- …