21,459 research outputs found

    The Minimal GUT with Inflaton and Dark Matter Unification

    Full text link
    Giving up the solutions to the fine-tuning problems, we propose the non-supersymmetric flipped SU(5)×U(1)XSU(5)\times U(1)_X model based on the minimal particle content principle, which can be constructed from the four-dimensional SO(10)SO(10) models, five-dimensional orbifold SO(10)SO(10) models, and local F-theory SO(10)SO(10) models. To achieve gauge coupling unification, we introduce one pair of vector-like fermions, which form complete SU(5)×U(1)XSU(5)\times U(1)_X representation. Proton lifetime is around 5×10355\times 10^{35} years, neutrino masses and mixing can be explained via seesaw mechanism, baryon asymmetry can be generated via leptogenesis, and vacuum stability problem can be solved as well. In particular, we propose that inflaton and dark matter particle can be unified to a real scalar field with Z2Z_2 symmetry, which is not an axion and does not have the non-minimal coupling to gravity. Such kind of scenarios can be applied to the generic scalar dark matter models. Also, we find that the vector-like particle corrections to the Bs0B_s^0 masses can be about 6.6%, while their corrections to the K0K^0 and Bd0B_d^0 masses are negligible.Comment: 5 pages, 4 figures;V2: published versio

    Analysis of variance, coefficient of determination and FF-test for local polynomial regression

    Full text link
    This paper provides ANOVA inference for nonparametric local polynomial regression (LPR) in analogy with ANOVA tools for the classical linear regression model. A surprisingly simple and exact local ANOVA decomposition is established, and a local R-squared quantity is defined to measure the proportion of local variation explained by fitting LPR. A global ANOVA decomposition is obtained by integrating local counterparts, and a global R-squared and a symmetric projection matrix are defined. We show that the proposed projection matrix is asymptotically idempotent and asymptotically orthogonal to its complement, naturally leading to an FF-test for testing for no effect. A by-product result is that the asymptotic bias of the ``projected'' response based on local linear regression is of quartic order of the bandwidth. Numerical results illustrate the behaviors of the proposed R-squared and FF-test. The ANOVA methodology is also extended to varying coefficient models.Comment: Published in at http://dx.doi.org/10.1214/07-AOS531 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore