1,887 research outputs found
Prediction of Near-Room-Temperature Quantum Anomalous Hall Effect on Honeycomb Materials
Recently, this long-sought quantum anomalous Hall effect was realized in the
magnetic topological insulator. However, the requirement of an extremely low
temperature (approximately 30 mK) hinders realistic applications. Based on
\textit{ab-initio} band structure calculations, we propose a quantum anomalous
Hall platform with a large energy gap of 0.34 and 0.06 eV on honeycomb lattices
comprised of Sn and Ge, respectively. The ferromagnetic order forms in one
sublattice of the honeycomb structure by controlling the surface
functionalization rather than dilute magnetic doping, which is expected to be
visualized by spin polarized STM in experiment. Strong coupling between the
inherent QSH state and ferromagnetism results in considerable exchange
splitting and consequently an FM insulator with a large energy gap. The
estimated mean-field Curie temperature is 243 and 509 K for Sn and Ge lattices,
respectively. The large energy gap and high Curie temperature indicate the
feasibility of the QAH effect in the near-room-temperature and even
room-temperature regions.Comment: 6 pages, 4 figures and 1 tabl
Cooling mechanical resonators to quantum ground state from room temperature
Ground-state cooling of mesoscopic mechanical resonators is a fundamental
requirement for test of quantum theory and for implementation of quantum
information. We analyze the cavity optomechanical cooling limits in the
intermediate coupling regime, where the light-enhanced optomechanical coupling
strength is comparable with the cavity decay rate. It is found that in this
regime the cooling breaks through the limits in both the strong and weak
coupling regimes. The lowest cooling limit is derived analytically at the
optimal conditions of cavity decay rate and coupling strength. In essence,
cooling to the quantum ground state requires , with being the mechanical quality factor and
being the thermal phonon number. Remarkably, ground-state
cooling is achievable starting from room temperature, when mechanical
-frequency product , and both of the
cavity decay rate and the coupling strength exceed the thermal decoherence
rate. Our study provides a general framework for optimizing the backaction
cooling of mesoscopic mechanical resonators
Genome sequence and genetic linkage analysis of Shiitake mushroom _Lentinula edodes_
_Lentinula edodes_ (Shiitake/Xianggu) is an important cultivated mushroom. Understanding the genomics and functional genomics of _L. edodes_ allows us to improve its cultivation and quality. Genome sequence is a key to develop molecular genetic markers for breeding and genetic manipulation. We sequenced the genome of _L. edodes_ monokaryon L54A using Roche 454 and ABI SOLiD genome sequencing. Sequencing reads of about 1400Mb were de novo assembled into a 40.2 Mb genome sequence. We compiled the genome sequence into a searchable database with which we have been annotating the genes and analyzing the metabolic pathways. In addition, we have been using many molecular techniques to analyze genes differentially expressed during development. Gene ortholog groups of _L. edodes_ genome sequence compared across genomes of several fungi including mushrooms identified gene families unique to mushroom-forming fungi. We used a mapping population of haploid basidiospores of dikaryon L54 for genetic linkage analysis. High-quality variations such as single nucleotide polymorphisms, insertions, and deletions of the mapping population formed a high-density genetic linkage map. We compared the linkage map to the _L. edodes_ L54A genome sequence and located selected quantitative trait loci. The Shiitake community will benefit from these resources for genetic studies and breeding.

Effects of 24-week treatment with acarbose on glucagon-like peptide 1 in newly diagnosed type 2 diabetic patients: a preliminary report
BACKGROUND: Treatment with the alpha-glucosidase inhibitor (AGI) acarbose is associated with a significant reduction the risk of cardiovascular events. However, the underlying mechanisms of this effect are unclear. AGIs were recently suggested to participate in stimulating glucagon-like peptide 1 (GLP-1) secretion. We therefore examined the effects of a 24-week treatment of acarbose on endogenous GLP-1, nitric oxide (NO) levels, nitric oxide synthase (NOS) activity, and carotid intima-media thickness (CIMT) in newly diagnosed patients with type 2 diabetes (T2D). METHODS: Blood was drawn from 24 subjects (14 male, 10 female, age: 50.7 ± 7.36 years, BMI: 26.64 ± 3.38 kg/m(2), GHbA1c: 7.00 ± 0.74%) with drug-naïve T2D at 0 and 120 min following a standard mixed meal for the measurements of active GLP-1, NO and NOS. The CIMT was measured prior to and following 24 weeks of acarbose monotherapy (mean dose: 268 mg daily). RESULTS: Following 24 weeks of acarbose treatment, both fasting and postprandial plasma GLP-1 levels were increased. In patients with increased postprandial GLP-1 levels, serum NO levels and NOS activities were also significantly increased and were positively related to GLP-1 levels. Although the CIMT was not significantly altered following treatment with acarbose, a decreased CIMT was negatively correlated with increased GLP-1 levels. CONCLUSIONS: Twenty-four weeks of acarbose monotherapy in newly diagnosed patients with T2D is associated with significantly increased levels of both fasting and postprandial GLP-1 as well as significantly increased NO levels and NOS activity for those patients in whom postprandial GLP-1 levels were increased. Therefore, the benefits of acarbose on cardiovascular risk may be related to its stimulation of GLP-1 secretion
Forschungsdatenzentrum PIAAC: Jahresbericht 2015; Berichtszeitraum 01.01.2015-31.12.2015
We used human gastric epithelial cells (GES-1) line in an ethanol-induced cell damage model to study the protective effect of Veronicastrum axillare and its modulation to NF-κB signal pathway. The goal was to probe the molecular mechanism of V. axillare decoction in the prevention of gastric ulcer and therefore provide guidance in the clinical application of V. axillare on treating injuries from chronic nephritis, pleural effusion, gastric ulcer, and other ailments. The effects of V. axillare-loaded serums on cell viability were detected by MTT assays. Enzyme-linked immunosorbent assay (ELISA) and Real-Time PCR methods were used to analyze the protein and mRNA expression of TNF-α, NF-κB, IκBα, and IKKβ. The results showed that V. axillare-loaded serum partially reversed the damaging effects of ethanol and NF-κB activator (phorbol-12-myristate-13-acetate: PMA) and increased cell viability. The protein and mRNA expressions of TNF-α, NF-κB, IκBα, and IKKβ were significantly upregulated by ethanol and PMA while they were downregulated by V. axillare-loaded serum. In summary, V. axillare-loaded serum has significantly protective effect on GES-1 against ethanol-induced injury. The protective effect was likely linked to downregulation of TNF-α based NF-κB signal pathway
Promoting Molecular Exchange on Rare-Earth Oxycarbonate Surfaces to Catalyze the Water-Gas Shift Reaction
It is highly desirable to fabricate an accessible catalyst surface that can efficiently activate reactants and desorb products to promote the local surface reaction equilibrium in heterogeneous catalysis. Herein, rare-earth oxycarbonates (Ln2O2CO3, where Ln = La and Sm), which have molecular-exchangeable (H2O and CO2) surface structures according to the ordered layered arrangement of Ln2O22+ and CO32- ions, are unearthed. On this basis, a series of Ln2O2CO3-supported Cu catalysts are prepared through the deposition precipitation method, which provides excellent catalytic activity and stability for the water-gas shift (WGS) reaction. Density functional theory calculations combined with systematic experimental characterizations verify that H2O spontaneously dissociates on the surface of Ln2O2CO3 to form hydroxyl by eliminating the carbonate through the release of CO2. This interchange efficiently promotes the WGS reaction equilibrium shift on the local surface and prevents the carbonate accumulation from hindering the active sites. The discovery of the unique layered structure provides a so-called "self-cleaning" active surface for the WGS reaction and opens new perspectives about the application of rare-earth oxycarbonate nanomaterials in C1 chemistry
- …