9,506 research outputs found

    Entanglement dynamics of two-qubit system in different types of noisy channels

    Full text link
    In this paper, we study entanglement dynamics of a two-qubit extended Werner-like state locally interacting with independent noisy channels, i.e., amplitude damping, phase damping and depolarizing channels. We show that the purity of initial entangled state has direct impacts on the entanglement robustness in each noisy channel. That is, if the initial entangled state is prepared in mixed instead of pure form, the state may exhibit entanglement sudden death (ESD) and/or be decreased for the critical probability at which the entanglement disappear.Comment: 11 pages, 6 figure

    Entanglement and quantum phase transition in alternating XY spin chain with next-nearest neighbour interactions

    Full text link
    By using the method of density-matrix renormalization-group to solve the different spin-spin correlation functions, the nearest-neighbouring entanglement(NNE) and next-nearest-neighbouring entanglement(NNNE) of one-dimensional alternating Heisenberg XY spin chain is investigated in the presence of alternating nearest neighbour interactions of exchange couplings, external magnetic fields and next-nearest neighbouring interactions. For dimerized ferromagnetic spin chain, NNNE appears only above the critical dimerized interaction, meanwhile, the dimerized interaction effects quantum phase transition point and improves NNNE to a large value. We also study the effect of ferromagnetic or antiferromagnetic next-nearest neighboring (NNN) interactions on the dynamics of NNE and NNNE. The ferromagnetic NNN interaction increases and shrinks NNE below and above critical frustrated interaction respectively, while the antiferromagnetic NNN interaction always decreases NNE. The antiferromagnetic NNN interaction results to a larger value of NNNE in comparison to the case when the NNN interaction is ferromagnetic.Comment: 13 pages, 4 figures,. accepted by Chinese Physics B 2008 11 (in press

    Competition between the BCS superconductivity and ferromagnetic spin fluctuations in MgCNi3_3

    Full text link
    The low temperature specific heat of the superconductor MgCNi3_3 and a non-superconductor MgC0.85_{0.85}Ni3_3 is investigated in detail. An additional contribution is observed from the data of MgCNi3_3 but absent in MgC0.85_{0.85}Ni3_3, which is demonstrated to be insensitive to the applied magnetic field even up to 12 Tesla. A detailed discussion on its origin is then presented. By subtracting this additional contribution, the zero field specific heat of MgCNi3_3 can be well described by the BCS theory with the gap ratio (Δ/kBTc\Delta/k_BT_c) determined by the previous tunneling measurements. The conventional s-wave pairing state is further proved by the magnetic field dependence of the specific heat at low temperatures and the behavior of the upper critical field.Comment: To appear in Physical Review B, 6 pages, 7 figure

    The entanglement in one-dimensional random XY spin chain with Dzyaloshinskii-Moriya interaction

    Full text link
    The impurities of exchange couplings, external magnetic fields and Dzyaloshinskii--Moriya (DM) interaction considered as Gaussian distribution, the entanglement in one-dimensional random XYXY spin systems is investigated by the method of solving the different spin-spin correlation functions and the average magnetization per spin. The entanglement dynamics at central locations of ferromagnetic and antiferromagnetic chains have been studied by varying the three impurities and the strength of DM interaction. (i) For ferromagnetic spin chain, the weak DM interaction can improve the amount of entanglement to a large value, and the impurities have the opposite effect on the entanglement below and above critical DM interaction. (ii) For antiferromagnetic spin chain, DM interaction can enhance the entanglement to a steady value. Our results imply that DM interaction strength, the impurity and exchange couplings (or magnetic field) play competing roles in enhancing quantum entanglement.Comment: 12 pages, 3 figure

    Evidence for s-wave pairing from measurement on lower critical field in MgCNi3MgCNi_3

    Full text link
    Magnetization measurements in the low field region have been carefully performed on a well-shaped cylindrical and an ellipsoidal sample of superconductor MgCNi3MgCNi_3. Data from both samples show almost the same results. The lower critical field Hc1H_{c1} and the London penetration depth λ\lambda are thus derived. It is found that the result of normalized superfluid density λ2(0)/λ2(T)\lambda^2(0)/\lambda^2(T) of MgCNi3MgCNi_3 can be well described by BCS prediction with the expectation for an isotropic s-wave superconductivity.Comment: To appear in Phys. Rev.

    Entanglement control in one-dimensional s=1/2s=1/2 random XY spin chain

    Full text link
    The entanglement in one-dimensional random XY spin systems where the impurities of exchange couplings and the external magnetic fields are considered as random variables is investigated by solving the different spin-spin correlation functions and the average magnetization per spin. The entanglement dynamics near particular locations of the system is also studied when the exchange couplings (or the external magnetic fields) satisfy three different distributions(the Gaussian distribution, double-Gaussian distribution, and bimodal distribution). We find that the entanglement can be controlled by varying the strength of external magnetic field and the different distributions of impurities. Moreover, the entanglement of some nearest-neighboring qubits can be increased for certain parameter values of the three different distributions.Comment: 13 pages, 4 figure
    • …
    corecore