2,420 research outputs found
G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells
Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), cause of the life-threatening atypical pneumonia, infects many organs, such as lung, liver and immune organ, and induces parenchyma cells apoptosis and necrosis. The genome of SARS-CoV, not closely related to any of the previously characterized coronavirus, encodes replicase and four major structural proteins and a number of non-structural proteins. Published studies suggest that some non-structural proteins may play important roles in the replication, virulence and pathogenesis of viruses. Among the potential SARS-CoV non-structural proteins, 3b protein (ORF4) is predicted encoding 154 amino acids, lacking significant similarities to any known proteins. Till now, there is no report about the function of 3b protein. In this study, 3b gene was linked with the EGFP tag at the C- terminus. Through cell cycle analysis, it was found that over-expression of 3b-EGFP protein in Vero, 293 and COS-7 cells could induce cell cycle arrest at G0/G1 phase, and that especially in COS-7 cells, expression of 3b-EGFP was able to induce the increase of sub-G1 phase from 24 h after transfection, which was most obvious at 48 h. The apoptosis induction of 3b fusion protein in COS-7 cells was further confirmed by double cell labeling with 7-AAD and Annexin V, the function of 3b protein inducing cell G0/G1 arrest and apoptosis may provide a new insight for further study on the mechanism of SARS pathogenesis
Generation and Characterization of Novel Human IRAS Monoclonal Antibodies
Imidazoline receptors were first proposed by Bousquet et al., when they studied antihypertensive effect of clonidine. A strong candidate for I1R, known as imidazoline receptor antisera-selected protein (IRAS), has been cloned from human hippocampus. We reported that IRAS mediated agmatine-induced inhibition of opioid dependence in morphine-dependent cells. To elucidate the functional and structure properties of I1R, we developed the newly monoclonal antibody against the N-terminal hIRAS region including the PX domain (10–120aa) through immunization of BALB/c mice with the NusA-IRAS fusion protein containing an IRAS N-terminal (10–120aa). Stable hybridoma cell lines were established and monoclonal antibodies specifically recognized full-length IRAS proteins in their native state by immunoblotting and immunoprecipitation. Monoclonal antibodies stained in a predominantly punctate cytoplasmic pattern when applied to IRAS-transfected HEK293 cells by indirect immunofluorescence assays and demonstrated excellent reactivity in flow immunocytometry. These monoclonal antibodies will provide powerful reagents for the further investigation of hIRAS protein functions
SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway
AbstractThe genome of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) contains four structural genes that are homologous to genes found in other coronaviruses, and also contains six subgroup-specific open reading frames (ORFs). Expression of one of these subgroup-specific genes, ORF7a, resulted in apoptosis via a caspase-dependent pathway. Here, we observed that transient expression of ORF7a protein fused with myc or GFP tags at its N or C terminus inhibited cell growth and prevented BrdU incorporation in different cultural cells, suggesting that ORF7a expression may regulate cell cycle progression. Analysis by flow cytometry demonstrated that ORF7a expression was associated with blockage of cell cycle progression at G0/G1 phase in HEK 293 cells after 24 to 60 h post-transfection. Similar results were observed in COS-7 and Vero cells. Mutation analysis of ORF7a revealed that the domain spanning aa 44–82 of 7a protein was essential for its cytoplasmic localization and for induction of the cell cycle arrest. After analyzing the cellular proteins involving in regulation of cell cycle progression, we demonstrated that ORF7a expression was correlated with a significant reduction of cyclin D3 level of mRNA transcription and expression, and phosphorylation of retinoblastoma (Rb) protein at ser795 and ser809/811, not with the expression of cyclin D1, D2, cdk4 and cdk6 in HEK 293 cells. These results suggest that the insufficient expression of cyclin D3 may cause a decreased activity of cyclin D/cdk4/6, resulting in the inhibition of Rb phosphorylation. Accumulation of hypo- or non-phosphorylated pRb thus prevents cell cycle progression at G0/G1 phase
l-Dopa induced dyskinesias in Parkinsonian mice: Disease severity or l-Dopa history
AbstractIn Parkinson’s disease, the efficacy of l-Dopa treatment changes over time, as dyskinesias emerge with previously beneficial doses. Using MitoPark mice, that models mitochondrial failure in dopamine (DA) neurons and mimics the progressive loss of dopamine observed in Parkinson’s disease, we found that the severity of DA denervation and associated adaptations in striatal neurotransmission at the time of initiation of l-Dopa treatment determines development of l-Dopa induced dyskinesias. We treated 20-week, and 28-week old MitoPark mice with l-Dopa (10mg/kg i.p. twice a day) and found locomotor responses to be significantly different. While all MitoPark mice developed sensitization to l-Dopa treatment over time, 28-week old MitoPark mice with extensive striatal DA denervation developed abnormal involuntary movements rapidly and severely after starting l-Dopa treatment, as compared to a more gradual escalation of movements in 20-week old animals that started treatment at earlier stages of degeneration. Our data support that it is the extent of loss of DA innervation that determines how soon motor complications develop with l-Dopa treatment. Gene array studies of striatal neurotransmitter receptors revealed changes in mRNA expression levels for DA, serotonin, glutamate and GABA receptors in striatum of 28-week old MitoPark mice. Our results support that delaying l-Dopa treatment until Parkinson’s disease symptoms become more severe does not delay the development of l-Dopa-induced dyskinesias. MitoPark mice model genetic alterations known to impair mitochondrial function in a subgroup of Parkinson patients and provide a platform in which to study treatments to minimize the development of dyskinesia
The safety and efficacy of PD-1 inhibitors in patients with advanced cancers and HIV/AIDS in China
Purpose-Immunotherapy has revolutionized cancer therapy, becoming the standard of care for various malignancy treatments. Human immunodeficiency virus (HIV) patients, however, are an underserved group with limited access to clinical trials and cancer therapy. This study was to evaluate the safety and efficacy of programmed cell death 1 (PD - 1) inhibitors in patients with advanced cancer and HIV/acquired immunodeficiency syndrome (AIDS). Methods and Materials-We performed a prospective, open-label, nonrandomized, phase 1 single center study. Patients with advanced cancer and HIV/AIDS received the treatment of PD - 1 inhibitors (camrelizumab, 200 mg, administered intravenously every 3 weeks), along with combination antiretroviral therapy (cART) for HIV. Results-Sixteen participants (12 men and 4 women; median age, 46.5 (29 - 78) years) were enrolled; 1 had non - Hodgkin lymphoma (NHL), and 15 had non - AIDS - defining cancers. Safety was observed over 130 cycles of treatment with camrelizumab. Most treatment-emergent adverse events at least possibly attributed to camrelizumab were grade 1 or 2, including reactive cutaneous capillary endothelial proliferation (RCCEP) (9 participants), hearing loss (1 participant), hypophysitis (1 participant). 3 participants experienced hemorrhage due to poor performance status. HIV was controlled in all participants. Best tumor responses included 3 complete response, 5 partial response, 2 stable disease, and 6 progressive disease. The 2 years progression-free survival (PFS) was 67.0% (95% CI: -0.05, 0.00) and overall survival (OS) was 55.3% (95% CI: -0.05, 0.01) for the 16 patients who had received camrelizumab. Conclusions-This study demonstrates that camrelizumab treatment in patients with advanced cancers and HIV/AIDS was feasible and the clinical outcomes were acceptable
NMDA Receptors on Non-Dopaminergic Neurons in the VTA Support Cocaine Sensitization
The initiation of behavioral sensitization to cocaine and other psychomotor stimulants is thought to reflect N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic plasticity in the mesolimbic dopamine (DA) circuitry. The importance of drug induced NMDAR mediated adaptations in ventral tegmental area (VTA) DA neurons, and its association with drug seeking behaviors, has recently been evaluated in Cre-loxp mice lacking functional NMDARs in DA neurons expressing Cre recombinase under the control of the endogenous dopamine transporter gene (NR1(DATCre) mice).Using an additional NR1(DATCre) mouse transgenic model, we demonstrate that while the selective inactivation of NMDARs in DA neurons eliminates the induction of molecular changes leading to synaptic strengthening, behavioral measures such as cocaine induced locomotor sensitization and conditioned place preference remain intact in NR1(DATCre) mice. Since VTA DA neurons projecting to the prefrontal cortex and amygdala express little or no detectable levels of the dopamine transporter, it has been speculated that NMDA receptors in DA neurons projecting to these brain areas may have been spared in NR1(DATCre) mice. Here we demonstrate that the NMDA receptor gene is ablated in the majority of VTA DA neurons, including those exhibiting undetectable DAT expression levels in our NR1(DATCre) transgenic model, and that application of an NMDAR antagonist within the VTA of NR1(DATCre) animals still blocks sensitization to cocaine.These results eliminate the possibility of NMDAR mediated neuroplasticity in the different DA neuronal subpopulations in our NR1(DATCre) mouse model and therefore suggest that NMDARs on non-DA neurons within the VTA must play a major role in cocaine-related addictive behavior
Selective Deletion of PTEN in Dopamine Neurons Leads to Trophic Effects and Adaptation of Striatal Medium Spiny Projecting Neurons
The widespread distribution of the tumor suppressor PTEN in the nervous system suggests a role in a broad range of brain functions. PTEN negatively regulates the signaling pathways initiated by protein kinase B (Akt) thereby regulating signals for growth, proliferation and cell survival. Pten deletion in the mouse brain has revealed its role in controlling cell size and number. In this study, we used Cre-loxP technology to specifically inactivate Pten in dopamine (DA) neurons (Pten KO mice). The resulting mutant mice showed neuronal hypertrophy, and an increased number of dopaminergic neurons and fibers in the ventral mesencephalon. Interestingly, quantitative microdialysis studies in Pten KO mice revealed no alterations in basal DA extracellular levels or evoked DA release in the dorsal striatum, despite a significant increase in total DA tissue levels. Striatal dopamine receptor D1 (DRD1) and prodynorphin (PDyn) mRNA levels were significantly elevated in KO animals, suggesting an enhancement in neuronal activity associated with the striatonigral projection pathway, while dopamine receptor D2 (DRD2) and preproenkephalin (PPE) mRNA levels remained unchanged. In addition, PTEN inactivation protected DA neurons and significantly enhanced DA-dependent behavioral functions in KO mice after a progressive 6OHDA lesion. These results provide further evidence about the role of PTEN in the brain and suggest that manipulation of the PTEN/Akt signaling pathway during development may alter the basal state of dopaminergic neurotransmission and could provide a therapeutic strategy for the treatment of Parkinson's disease, and other neurodegenerative disorders
- …