17 research outputs found

    Blockade of myeloid differentiation 2 attenuates diabetic nephropathy by reducing activation of the renin-angiotensin system in mouse kidneys

    Get PDF
    Background and Purpose: Both innate immunity and the renin-angiotensin system (RAS) play important roles in the pathogenesis of diabetic nephropathy (DN). Myeloid differentiation factor 2 (MD2) is a co-receptor of toll-like receptor 4 (TLR4) in innate immunity. While TLR4 is involved in the development of DN, the role of MD2 in DN has not been characterized. It also remains unclear whether the MD2/TLR4 signalling pathway is associated with RAS activation in diabetes. Experimental Approach: MD2 was blocked using siRNA or the low MW inhibitor, L6H9, in renal proximal tubular cells (NRK-52E cells) exposed to high concentrations of glucose (HG). In vivo, C57BL/6 and MD2−/− mice were injected with streptozotocin to induce Type 1 diabetes and nephropathy. Key Results: Inhibition of MD2 by genetic knockdown or the inhibitor L6H9 suppressed HG-induced expression of ACE and angiotensin receptors and production of angiotensin II in NRK-52E cells, along with decreased fibrosis markers (TGF-β and collagen IV). Inhibition of the MD2/TLR4-MAPKs pathway did not affect HG-induced renin overproduction. In vivo, using the streptozotocin-induced diabetic mice, MD2 was overexpressed in diabetic kidney. MD2 gene knockout or L6H9 attenuated renal fibrosis and dysfunction by suppressing local RAS activation and inflammation. Conclusions and Implications: Hyperglycaemia activated the MD2/TLR4-MAPKs signalling cascade to induce renal RAS activation, leading to renal fibrosis and dysfunction. Pharmacological inhibition of MD2 may be considered as a therapeutic approach to mitigate DN and the low MW inhibitor L6H9 could be a candidate for such therapy

    Cardiac dysfunction associated with consumptive hypothyroidism in a case of hepatic haemangioma

    Get PDF
    Not required for Clinical Vignette

    MOS11: A New Component in the mRNA Export Pathway

    Get PDF
    Nucleocytoplasmic trafficking is emerging as an important aspect of plant immunity. The three related pathways affecting plant immunity include Nuclear Localization Signal (NLS)–mediated nuclear protein import, Nuclear Export Signal (NES)–dependent nuclear protein export, and mRNA export relying on MOS3, a nucleoporin belonging to the Nup107–160 complex. Here we report the characterization, identification, and detailed analysis of Arabidopsis modifier of snc1, 11 (mos11). Mutations in MOS11 can partially suppress the dwarfism and enhanced disease resistance phenotypes of snc1, which carries a gain-of-function mutation in a TIR-NB-LRR type Resistance gene. MOS11 encodes a conserved eukaryotic protein with homology to the human RNA binding protein CIP29. Further functional analysis shows that MOS11 localizes to the nucleus and that the mos11 mutants accumulate more poly(A) mRNAs in the nucleus, likely resulting from reduced mRNA export activity. Epistasis analysis between mos3-1 and mos11-1 revealed that MOS11 probably functions in the same mRNA export pathway as MOS3, in a partially overlapping fashion, before the mRNA molecules pass through the nuclear pores. Taken together, MOS11 is identified as a new protein contributing to the transfer of mature mRNA from the nucleus to the cytosol

    Optical Selection Rule of Excitons in Gapped Chiral Fermion Systems

    No full text

    Synthesis and Evaluation of a Series of Novel Asymmetrical Curcumin Analogs for the Treatment of Inflammation

    No full text
    Curcumin has been reported to possess multiple bioactivities, such as antioxidant, anticancer, and anti-inflammatory properties, however the clinical application of curcumin has been significantly limited by its instability and poor metabolism. Modification of curcumin has led to discovery and development of lots of novel therapeutic candidates. In recent years acute and chronic inflammation has been the focus of numerous studies in various diseases. Here, we synthesized a series of asymmetrical curcumin analogs with high in vitro chemical stability, and their anti-inflammatory activity was evaluated in LPS-stimulated macrophages. According to the bio-screening results and QSAR analysis, these analogs exhibited potent activities against LPS-induced TNF-α and IL-6 release. Among the analogs of the potent anti-inflammatory activity, compounds 3b8 and 3b9 exhibited significant protection and possess enhanced anti-inflammatory activity thereby attenuated the LPS-induced septic death in mice

    Structural basis of α1A-adrenergic receptor activation and recognition by an extracellular nanobody

    No full text
    Abstract The α1A-adrenergic receptor (α1AAR) belongs to the family of G protein-coupled receptors that respond to adrenaline and noradrenaline. α1AAR is involved in smooth muscle contraction and cognitive function. Here, we present three cryo-electron microscopy structures of human α1AAR bound to the endogenous agonist noradrenaline, its selective agonist oxymetazoline, and the antagonist tamsulosin, with resolutions range from 2.9 Å to 3.5 Å. Our active and inactive α1AAR structures reveal the activation mechanism and distinct ligand binding modes for noradrenaline compared with other adrenergic receptor subtypes. In addition, we identified a nanobody that preferentially binds to the extracellular vestibule of α1AAR when bound to the selective agonist oxymetazoline. These results should facilitate the design of more selective therapeutic drugs targeting both orthosteric and allosteric sites in this receptor family
    corecore