3,507 research outputs found

    A New Phase Transition Related to the Black Hole's Topological Charge

    Full text link
    The topological charge ϵ\epsilon of AdS black hole is introduced in Ref.[1,2], where a complete thermodynamic first law is obtained. In this paper, we investigate a new phase transition related to the topological charge in Einstein-Maxwell theory. Firstly, we derive the explicit solutions corresponding to the divergence of specific heat CϵC_{\epsilon} and determine the phase transition critical point. Secondly, the T−rT-r curve and T−ST-S curve are investigated and they exhibit an interesting van der Waals system's behavior. Critical physical quantities are also obtained which are consistent with those derived from the specific heat analysis. Thirdly, a van der Waals system's swallow tail behavior is observed when ϵ>ϵc\epsilon>\epsilon_{c} in the F−TF-T graph. What's more, the analytic phase transition coexistence lines are obtained by using the Maxwell equal area law and free energy analysis, the results of which are consistent with each other.Comment: 11 pages, 5 figure

    RGB-T salient object detection via fusing multi-level CNN features

    Get PDF
    RGB-induced salient object detection has recently witnessed substantial progress, which is attributed to the superior feature learning capability of deep convolutional neural networks (CNNs). However, such detections suffer from challenging scenarios characterized by cluttered backgrounds, low-light conditions and variations in illumination. Instead of improving RGB based saliency detection, this paper takes advantage of the complementary benefits of RGB and thermal infrared images. Specifically, we propose a novel end-to-end network for multi-modal salient object detection, which turns the challenge of RGB-T saliency detection to a CNN feature fusion problem. To this end, a backbone network (e.g., VGG-16) is first adopted to extract the coarse features from each RGB or thermal infrared image individually, and then several adjacent-depth feature combination (ADFC) modules are designed to extract multi-level refined features for each single-modal input image, considering that features captured at different depths differ in semantic information and visual details. Subsequently, a multi-branch group fusion (MGF) module is employed to capture the cross-modal features by fusing those features from ADFC modules for a RGB-T image pair at each level. Finally, a joint attention guided bi-directional message passing (JABMP) module undertakes the task of saliency prediction via integrating the multi-level fused features from MGF modules. Experimental results on several public RGB-T salient object detection datasets demonstrate the superiorities of our proposed algorithm over the state-of-the-art approaches, especially under challenging conditions, such as poor illumination, complex background and low contrast

    Incompatibility between a pair of residues from the Pre-M1 linker and Cys-loop blocks surface expression of the Glycine Receptor

    Get PDF
    Regulation of cell membrane excitability can be achieved either by modulating the functional properties of cell membrane-expressed single channels or by varying the number of expressed channels. Whereas the structural basis underlying single channel properties has been intensively studied, the structural basis contributing to surface expression is less well characterized. Here we demonstrate that homologous substitution of the pre-M1 linker from the DOI 10.1074/jbc.M111.325126 subunit prevents surface expression of the α1 glycine receptor chloride channel. By investigating a series of chimeras comprising α1 and DOI 10.1074/jbc.M111.325126 subunits, we hypothesized that this effect was due to incompatibility between a pair of positively charged residues, which lie in close proximity to each other in the tertiary structure, from the pre-M1 linker and Cys-loop. Abolishing either positive charge restored surface expression. We propose that incompatibility (electrostatic repulsion) between this pair of residues misfolds the glycine receptor, and in consequence, the protein is retained in the cytoplasm and prevented from surface expression by the quality control machinery. This hypothesis suggests a novel mechanism, i.e. residue incompatibility, for explaining the mutation-induced reduction in channel surface expression, often present in the cases of hereditary hyperekplexia
    • …
    corecore