196 research outputs found
Cervical cancer screening cascade for women living with HIV: a cohort study from Zimbabwe
Countries with high HIV prevalence, predominantly in sub-Sahahran Africa, have the highest cervical cancer rates globally. HIV care cascades successfully facilitated the scale-up of antiretroviral therapy. A cascade approach could similarly succeed to scale-up cervical cancer screening, supporting WHO's goal to eliminate cervical cancer. We defined a Cervical Cancer Screening Cascade for women living with HIV (WLHIV), evaluating the continuum of cervical cancer screening integrated into an HIV clinic in Zimbabwe. We included WLHIV aged ≥18 years enrolled at Newlands Clinic in Harare from June 2012-2017 and followed them until June 2018. We used a cascade approach to evaluate the full continuum of secondary prevention from screening to treatment of pre-cancer and follow-up. We report percentages, median time to reach cascade stages, and cumulative incidence at two years with 95% confidence intervals (CI). We used univariable Cox proportional hazard regressions to calculate cause-specific hazard ratios with 95% CIs for factors associated with completing the cascade stages. We included 1624 WLHIV in the study. The cumulative incidence of cervical screening was 85.4% (95% CI 83.5-87.1) at two years. Among the 396 WLHIV who received screen-positive tests in the study, the cumulative incidence of treatment after a positive screening test was 79.5% (95% CI 75.1-83.2) at two years. The cumulative incidence of testing negative at re-screening after treatment was 36.1% (95% CI 31.2-40.7) at two years. Using a cascade approach to evaluate the full continuum of cervical cancer screening, we found less-than 80% of WLHIV received treatment after screen-positive tests and less-than 40% were screen-negative at follow-up. Interventions to improve linkage to treatment for screen-positive WLHIV and studies to understand the clinical significance of screen-positive tests at follow-up among WLHIV are needed. These gaps in the continuum of care must be addressed in order to prevent cervical cancer
Improving Allocative Efficiency in Zimbabwe’s Health Sector: Results from the Health Interventions Prioritization Tool
The country of Zimbabwe has seen some important improvements in key health outcomes since 2009. However, despite progress in some areas of the health sector, the country did not meet its Millennium Development Goals (MDGs) and current progress falls short of the Sustainable Development Goals (SDGs) milestones. As is often the case, the poor and rural populations in Zimbabwe bear a disproportionate burden of disease and health risks. The situation is compounded by national economic challenges and health sector spending inefficiencies that have resulted in households bearing an increasing share of health sector financing, mainly through out-of-pocket expenditures. Households provide approximately 25 percent of health sector financing in Zimbabwe. Again, the poor and rural populations are hardest hit by this economic reality. Zimbabwe was one of the few countries in which HIPtool was piloted at the proof of concept stage. HIPtool enables the mathematical prioritization of interventions based on existing data and a set of criteria. It provides a technical foundation to further develop an essential health benefits package. However, HIPtool, at this stage in development, still has strong limitations, which are outlined along with results in this report
AMBIsome Therapy Induction OptimisatioN (AMBITION): High dose AmBisome for cryptococcal meningitis induction therapy in sub-Saharan Africa: economic evaluation protocol for a randomised controlled trial-based equivalence study.
INTRODUCTION: Cryptococcal meningitis is responsible for around 15% of all HIV-related deaths globally. Conventional treatment courses with amphotericin B require prolonged hospitalisation and are associated with multiple toxicities and poor outcomes. A phase II study has shown that a single high dose of liposomal amphotericin may be comparable to standard treatment. We propose a phase III clinical endpoint trial comparing single, high-dose liposomal amphotericin with the WHO recommended first-line treatment at six sites across five counties. An economic analysis is essential to support wide-scale implementation. METHODS AND ANALYSIS: Country-specific economic evaluation tools will be developed across the five country settings. Details of patient and household out-of-pocket expenses and any catastrophic healthcare expenditure incurred will be collected via interviews from trial patients. Health service patient costs and related household expenditure in both arms will be compared over the trial period in a probabilistic approach, using Monte Carlo bootstrapping methods. Costing information and number of life-years survived will be used as the input to a decision-analytic model to assess the cost-effectiveness of a single, high-dose liposomal amphotericin to the standard treatment. In addition, these results will be compared with a historical cohort from another clinical trial. ETHICS AND DISSEMINATION: The AMBIsome Therapy Induction OptimisatioN (AMBITION) trial has been evaluated and approved by the London School of Hygiene and Tropical Medicine, University of Botswana, Malawi National Health Sciences, University of Cape Town, Mulago Hospital and Zimbabwe Medical Research Council research ethics committees. All participants will provide written informed consent or if lacking capacity will have consent provided by a proxy. The findings of this economic analysis, part of the AMBITION trial, will be disseminated through peer-reviewed publications and at international and country-level policy meetings. TRIAL REGISTRATION: ISRCTN 7250 9687; Pre-results
Structural and functional basis for RNA cleavage by Ire1
BACKGROUND: The unfolded protein response (UPR) controls the protein folding capacity of the endoplasmic reticulum (ER). Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase) domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis.
RESULTS: This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing \u3e/=7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL) of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase.
CONCLUSIONS: Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L
BiP Binding to the ER-Stress Sensor Ire1 Tunes the Homeostatic Behavior of the Unfolded Protein Response
Computational modeling and experimentation in the unfolded protein response reveals a role for the ER-resident chaperone protein BiP in fine-tuning the system's response dynamics
Regulation of the catalytic function of topoisomerase II alpha through association with RNA
Topoisomerase IIα interacts with numerous nuclear factors, through which it is engaged in diverse nuclear events such as DNA replication, transcription and the formation or maintenance of heterochromatin. We previously reported that topoisomerase IIα interacts with RNA helicase A (RHA), consistent with a recent view that topoisomerases and helicases function together. Intrigued by our observation that the RHA–topoisomerase IIα interaction is sensitive to ribonuclease A, we explored whether the RHA–topoisomerase IIα interaction can be recapitulated in vitro using purified proteins and a synthetic RNA. This work led us to an unexpected finding that an RNA-binding activity is intrinsically associated with topoisomerase IIα. Topoisomerase IIα stably interacted with RNA harboring a 3′-hydroxyl group but not with RNA possessing a 3′-phosphate group. When measured in decatenation and relaxation assays, RNA binding influenced the catalytic function of topoisomerase IIα to regulate DNA topology. We discuss a possible interaction of topoisomerase IIα with the poly(A) tail and G/U-rich 3′-untranslated region (3′-UTR) of mRNA as a key step in transcription termination
A feasibility study using time-driven activity-based costing as a management tool for provider cost estimation: lessons from the national TB control program in Zimbabwe in 2018.
BACKGROUND: Insufficient cost data and limited capacity constrains the understanding of the actual resources required for effective TB control. This study used process maps and time-driven activity-based costing to document TB service delivery processes. The analysis identified the resources required to sustain TB services in Zimbabwe, as well as several opportunities for more effective and efficient use of available resources. METHODS: A multi-disciplinary team applied time-driven activity-based costing (TDABC) to develop process maps and measure the cost of clinical pathways used for Drug Susceptible TB (DS-TB) at urban polyclinics, rural district and provincial hospitals, and community based targeted screening for TB (Tas4TB). The team performed interviews and observations to collect data on the time taken by health care worker-patient pairs at every stage of the treatment pathway. The personnel's practical capacity and capacity cost rates were calculated on five cost domains. An MS Excel model calculated diagnostic and treatment costs. FINDINGS: Twenty-five stages were identified in the TB care pathway across all health facilities except for community targeted screening for TB. Considerable variations were observed among the facilities in how health care professionals performed client registration, taking of vital signs, treatment follow-up, dispensing medicines and processing samples. The average cost per patient for the entire DS-TB care was USD324 with diagnosis costing USD69 and treatment costing USD255. The average cost for diagnosis and treatment was higher in clinics than in hospitals (USD392 versus USD256). Nurses in clinics were 1.6 time more expensive than in hospitals. The main cost components were personnel (USD130) and laboratory (USD119). Diagnostic cost in Tas4TB was twice that of health facility setting (USD153 vs USD69), with major cost drivers being demand creation (USD89) and sputum specimen transportation (USD5 vs USD3). CONCLUSION: TDABC is a feasible and effective costing and management tool in low-resource settings. The TDABC process maps and treatment costs revealed several opportunities for innovative improvements in the NTP under public health programme settings. Re-engineering laboratory testing processes and synchronising TB treatment follow-up with antiretroviral treatments could produce better and more uniform TB treatments at significantly lower cost in Zimbabwe
PIASγ Is Required for Faithful Chromosome Segregation in Human Cells
BACKGROUND: The precision of the metaphase-anaphase transition ensures stable genetic inheritance. The spindle checkpoint blocks anaphase onset until the last chromosome biorients at metaphase plate, then the bonds between sister chromatids are removed and disjoined chromatids segregate to the spindle poles. But, how sister separation is triggered is not fully understood. PRINCIPAL FINDINGS: We identify PIASγ as a human E3 sumo ligase required for timely and efficient sister chromatid separation. In cells lacking PIASγ, normal metaphase plates form, but the spindle checkpoint is activated, leading to a prolonged metaphase block. Sister chromatids remain cohered even if cohesin is removed by depletion of hSgo1, because DNA catenations persist at centromeres. PIASγ-depleted cells cannot properly localize Topoisomerase II at centromeres or in the cores of mitotic chromosomes, providing a functional link between PIASγ and Topoisomerase II. CONCLUSIONS: PIASγ directs Topoisomerase II to specific chromosome regions that require efficient removal of DNA catenations prior to anaphase. The lack of this activity activates the spindle checkpoint, protecting cells from non-disjunction. Because DNA catenations persist without PIASγ in the absence of cohesin, removal of catenations and cohesin rings must be regulated in parallel
Physiological IRE-1-XBP-1 and PEK-1 Signaling in Caenorhabditis elegans Larval Development and Immunity
Endoplasmic reticulum (ER) stress activates the Unfolded Protein Response, a compensatory signaling response that is mediated by the IRE-1, PERK/PEK-1, and ATF-6 pathways in metazoans. Genetic studies have implicated roles for UPR signaling in animal development and disease, but the function of the UPR under physiological conditions, in the absence of chemical agents administered to induce ER stress, is not well understood. Here, we show that in Caenorhabditis elegans XBP-1 deficiency results in constitutive ER stress, reflected by increased basal levels of IRE-1 and PEK-1 activity under physiological conditions. We define a dynamic, temperature-dependent requirement for XBP-1 and PEK-1 activities that increases with immune activation and at elevated physiological temperatures in C. elegans. Our data suggest that the negative feedback loops involving the activation of IRE-1-XBP-1 and PEK-1 pathways serve essential roles, not only at the extremes of ER stress, but also in the maintenance of ER homeostasis under physiological conditions.National Institutes of Health (U.S.) (grant R01-GM084477
The decatenation checkpoint
The decatenation checkpoint delays entry into mitosis until the chromosomes have been disentangled. Deficiency in or bypass of the decatenation checkpoint can cause chromosome breakage and nondisjunction during mitosis, which results in aneuploidy and chromosome rearrangements in the daughter cells. A deficiency in the decatenation checkpoint has been reported in lung and bladder cancer cell lines and may contribute to the accumulation of chromosome aberrations that commonly occur during tumour progression. A checkpoint deficiency has also been documented in cultured stem and progenitor cells, and cancer stem cells are likely to be derived from stem and progenitor cells that lack an effective decatenation checkpoint. An inefficient decatenation checkpoint is likely to be a source of the chromosome aberrations that are common features of most tumours, but an inefficient decatenation checkpoint in cancer stem cells could also provide a potential target for chemotherapy
- …