8 research outputs found

    Auxiliary Learning as an Asymmetric Bargaining Game

    Full text link
    Auxiliary learning is an effective method for enhancing the generalization capabilities of trained models, particularly when dealing with small datasets. However, this approach may present several difficulties: (i) optimizing multiple objectives can be more challenging, and (ii) how to balance the auxiliary tasks to best assist the main task is unclear. In this work, we propose a novel approach, named AuxiNash, for balancing tasks in auxiliary learning by formalizing the problem as generalized bargaining game with asymmetric task bargaining power. Furthermore, we describe an efficient procedure for learning the bargaining power of tasks based on their contribution to the performance of the main task and derive theoretical guarantees for its convergence. Finally, we evaluate AuxiNash on multiple multi-task benchmarks and find that it consistently outperforms competing methods.Comment: ICML 202

    Equivariant Architectures for Learning in Deep Weight Spaces

    Full text link
    Designing machine learning architectures for processing neural networks in their raw weight matrix form is a newly introduced research direction. Unfortunately, the unique symmetry structure of deep weight spaces makes this design very challenging. If successful, such architectures would be capable of performing a wide range of intriguing tasks, from adapting a pre-trained network to a new domain to editing objects represented as functions (INRs or NeRFs). As a first step towards this goal, we present here a novel network architecture for learning in deep weight spaces. It takes as input a concatenation of weights and biases of a pre-trained MLP and processes it using a composition of layers that are equivariant to the natural permutation symmetry of the MLP's weights: Changing the order of neurons in intermediate layers of the MLP does not affect the function it represents. We provide a full characterization of all affine equivariant and invariant layers for these symmetries and show how these layers can be implemented using three basic operations: pooling, broadcasting, and fully connected layers applied to the input in an appropriate manner. We demonstrate the effectiveness of our architecture and its advantages over natural baselines in a variety of learning tasks.Comment: ICML 202

    DisCLIP: Open-Vocabulary Referring Expression Generation

    Full text link
    Referring Expressions Generation (REG) aims to produce textual descriptions that unambiguously identifies specific objects within a visual scene. Traditionally, this has been achieved through supervised learning methods, which perform well on specific data distributions but often struggle to generalize to new images and concepts. To address this issue, we present a novel approach for REG, named DisCLIP, short for discriminative CLIP. We build on CLIP, a large-scale visual-semantic model, to guide an LLM to generate a contextual description of a target concept in an image while avoiding other distracting concepts. Notably, this optimization happens at inference time and does not require additional training or tuning of learned parameters. We measure the quality of the generated text by evaluating the capability of a receiver model to accurately identify the described object within the scene. To achieve this, we use a frozen zero-shot comprehension module as a critique of our generated referring expressions. We evaluate DisCLIP on multiple referring expression benchmarks through human evaluation and show that it significantly outperforms previous methods on out-of-domain datasets. Our results highlight the potential of using pre-trained visual-semantic models for generating high-quality contextual descriptions

    COMPOSER: Compositional Reasoning of Group Activity in Videos with Keypoint-Only Modality

    Full text link
    Group Activity Recognition detects the activity collectively performed by a group of actors, which requires compositional reasoning of actors and objects. We approach the task by modeling the video as tokens that represent the multi-scale semantic concepts in the video. We propose COMPOSER, a Multiscale Transformer based architecture that performs attention-based reasoning over tokens at each scale and learns group activity compositionally. In addition, prior works suffer from scene biases with privacy and ethical concerns. We only use the keypoint modality which reduces scene biases and prevents acquiring detailed visual data that may contain private or biased information of users. We improve the multiscale representations in COMPOSER by clustering the intermediate scale representations, while maintaining consistent cluster assignments between scales. Finally, we use techniques such as auxiliary prediction and data augmentations tailored to the keypoint signals to aid model training. We demonstrate the model's strength and interpretability on two widely-used datasets (Volleyball and Collective Activity). COMPOSER achieves up to +5.4% improvement with just the keypoint modality. Code is available at https://github.com/hongluzhou/composerComment: ECCV 202

    Data Augmentations in Deep Weight Spaces

    Full text link
    Learning in weight spaces, where neural networks process the weights of other deep neural networks, has emerged as a promising research direction with applications in various fields, from analyzing and editing neural fields and implicit neural representations, to network pruning and quantization. Recent works designed architectures for effective learning in that space, which takes into account its unique, permutation-equivariant, structure. Unfortunately, so far these architectures suffer from severe overfitting and were shown to benefit from large datasets. This poses a significant challenge because generating data for this learning setup is laborious and time-consuming since each data sample is a full set of network weights that has to be trained. In this paper, we address this difficulty by investigating data augmentations for weight spaces, a set of techniques that enable generating new data examples on the fly without having to train additional input weight space elements. We first review several recently proposed data augmentation schemes %that were proposed recently and divide them into categories. We then introduce a novel augmentation scheme based on the Mixup method. We evaluate the performance of these techniques on existing benchmarks as well as new benchmarks we generate, which can be valuable for future studies.Comment: Accepted to NeurIPS 2023 Workshop on Symmetry and Geometry in Neural Representation

    Multi-Task Learning as a Bargaining Game

    Full text link
    In Multi-task learning (MTL), a joint model is trained to simultaneously make predictions for several tasks. Joint training reduces computation costs and improves data efficiency; however, since the gradients of these different tasks may conflict, training a joint model for MTL often yields lower performance than its corresponding single-task counterparts. A common method for alleviating this issue is to combine per-task gradients into a joint update direction using a particular heuristic. In this paper, we propose viewing the gradients combination step as a bargaining game, where tasks negotiate to reach an agreement on a joint direction of parameter update. Under certain assumptions, the bargaining problem has a unique solution, known as the Nash Bargaining Solution, which we propose to use as a principled approach to multi-task learning. We describe a new MTL optimization procedure, Nash-MTL, and derive theoretical guarantees for its convergence. Empirically, we show that Nash-MTL achieves state-of-the-art results on multiple MTL benchmarks in various domains.Comment: ICML 202
    corecore