6 research outputs found

    Bone marrow aspirate concentrate versus platelet-rich plasma for treating knee osteoarthritis: a one-year non-randomized retrospective comparative study

    No full text
    Abstract Background Knee osteoarthritis (OA) is a debilitating condition affecting human body biomechanics and quality of life. Current standard care for knee OA leads to trivial improvement and entails multiple adverse effects or complications. Recently, investigational cell therapies injected intra-articularly, such as bone marrow aspirate concentrate (BMAC) and platelet-rich plasma (PRP), have shown safety and therapeutic potency providing patients with pain relief. In the current retrospective comparative study, we investigated the differences in pain and functional improvements in patients with symptomatic knee OA receiving intra-articular injections of BMAC vs PRP. Methods Pain and functionality scores were measured at baseline and at different time points post-injection over 12 months, using 3 self-administered, clinically validated questionnaires: the visual analogue scale (VAS) for assessing pain intensity, the knee injury and osteoarthritis outcome score (KOOS) for evaluating functionality and knee-related quality of life, and the Western Ontario and McMaster Universities Arthritis Index (WOMAC) for evaluating physical function. The repeated-measures general linear model with Sidak test for pairwise comparisons was used to investigate the influence of the treatment on the score evolution within groups (between baseline and each time point) and between groups (overall). Results The BMAC group (n = 26 knees) significantly improved in VAS, KOOS, and WOMAC scores between baseline and 12 months (57.4, 75.88, and 73.95% mean score improvement, respectively). In contrast, the PRP group (n = 13 knees) witnessed nonsignificant improvement in all scores. BMAC, in comparison to PRP, induced significant improvement in outcomes by 29.38% on the VAS scale, 53.89% on the KOOS scale, and 51.71% on the WOMAC scale (P < .002, P < .01, P < .011, respectively). Conclusions Intra-articular autologous BMAC injections are safe, effective in treating pain, and ameliorate functionality in patients with symptomatic knee OA to a greater extent than PRP injections. Graphical abstract Intra-articular autologous BMAC therapy is safe and provides more relief to patients with symptomatic knee osteoarthritis compared to PRP therapy

    Humoral Immunity to Allogeneic Immunoproteasome-Expressing Mesenchymal Stromal Cells Requires Efferocytosis by Endogenous Phagocytes

    No full text
    The extensive use of mesenchymal stromal cells (MSCs) over the last decade has revolutionized modern medicine. From the delivery of pharmacological proteins to regenerative medicine and immune modulation, these cells have proven to be highly pleiotropic and responsive to their surrounding environment. Nevertheless, their role in promoting inflammation has been fairly limited by the questionable use of interferon-gamma, as this approach has also been proven to enhance the cells&rsquo; immune-suppressive abilities. Alternatively, we have previously shown that de novo expression of the immunoproteasome (IPr) complex instills potent antigen cross-presentation capabilities in MSCs. Interestingly, these cells were found to express the major histocompatibility class (MHC) II protein, which prompted us to investigate their ability to stimulate humoral immunity. Using a series of in vivo studies, we found that administration of allogeneic ovalbumin (OVA)-pulsed MSC-IPr cells elicits a moderate antibody titer, which was further enhanced by the combined use of pro-inflammatory cytokines. The generated antibodies were functional as they blocked CD4 T-cell activation following their co-culture with OVA-pulsed MSC-IPr and mitigated E.G7 tumor growth in vivo. The therapeutic potency of MSC-IPr was, however, dependent on efferocytosis, as phagocyte depletion prior to vaccination abrogated MSC-IPr-induced humoral responses while promoting their survival in the host. In contrast, antibody-mediated neutralization of CD47, a potent &ldquo;do not eat me signal&rdquo;, enhanced antibody titer levels. These observations highlight the major role played by myeloid cells in supporting antibody production by MSC-IPr and suggest that the immune outcome is dictated by a net balance between efferocytosis-stimulating and -inhibiting signals

    LSD1 Inhibition Enhances the Immunogenicity of Mesenchymal Stromal Cells by Eliciting a dsRNA Stress Response

    No full text
    Mesenchymal stromal cells (MSCs) are commonly known for their immune-suppressive abilities. However, our group provided evidence that it is possible to convert MSCs into potent antigen presenting cells (APCs) using either genetic engineering or pharmacological means. Given the capacity of UM171a to trigger APC-like function in MSCs, and the recent finding that this drug may modulate the epigenome by inhibiting the lysine-specific demethylase 1 (LSD1), we explored whether the direct pharmacological inhibition of LSD1 could instill APC-like functions in MSCs akin to UM171a. The treatment of MSCs with the LSD1 inhibitor tranylcypromine (TC) elicits a double-stranded (ds)RNA stress response along with its associated responsive elements, including pattern recognition receptors (PRRs), Type-I interferon (IFN), and IFN-stimulated genes (ISGs). The net outcome culminates in the enhanced expression of H2-Kb, and an increased stability of the cell surface peptide: MHCI complexes. As a result, TC-treated MSCs stimulate CD8 T-cell activation efficiently, and elicit potent anti-tumoral responses against the EG.7 T-cell lymphoma in the context of prophylactic vaccination. Altogether, our findings reveal a new pharmacological protocol whereby targeting LSD1 in MSCs elicits APC-like capabilities that could be easily exploited in the design of future MSC-based anti-cancer vaccines

    UM171A-induced ROS promote antigen cross-presentation of immunogenic peptides by bone marrow-derived mesenchymal stromal cells

    No full text
    Abstract Background Mesenchymal stromal cells (MSCs) have been extensively used in the clinic due to their exquisite tissue repair capacity. However, they also hold promise in the field of cellular vaccination as they can behave as conditional antigen presenting cells in response to interferon (IFN)-gamma treatment under a specific treatment regimen. This suggests that the immune function of MSCs can be pharmacologically modulated. Given the capacity of the agonist pyrimido-indole derivative UM171a to trigger the expression of various antigen presentation-related genes in human hematopoietic progenitor cells, we explored the potential use of UM171a as a means to pharmacologically instill and/or promote antigen presentation by MSCs. Methods Besides completing a series of flow-cytometry-based phenotypic analyses, several functional antigen presentation assays were conducted using the SIINFEKL-specific T-cell clone B3Z. Anti-oxidants and electron transport chain inhibitors were also used to decipher UM171a’s mode of action in MSCs. Finally, the potency of UM171a-treated MSCs was evaluated in the context of therapeutic vaccination using immunocompetent C57BL/6 mice with pre-established syngeneic EG.7T-cell lymphoma. Results Treatment of MSCs with UM171a triggered potent increase in H2-Kb cell surface levels along with the acquisition of antigen cross-presentation abilities. Mechanistically, such effects occurred in response to UM171a-mediated production of mitochondrial-derived reactive oxygen species as their neutralization using anti-oxidants or Antimycin-A mitigated MSCs’ ability to cross-present antigens. Processing and presentation of the immunogenic ovalbumin-derived SIINFEKL peptide was caused by de novo expression of the Psmb8 gene in response to UM171a-triggered oxidative stress. When evaluated for their anti-tumoral properties in the context of therapeutic vaccination, UM171a-treated MSC administration to immunocompetent mice with pre-established T-cell lymphoma controlled tumor growth resulting in 40% survival without the need of additional supportive therapy and/or standard-of-care. Conclusions Altogether, our findings reveal a new immune-related function for UM171a and clearly allude to a direct link between UM171a-mediated ROS induction and antigen cross-presentation by MSCs. The fact that UM171a treatment modulates MSCs to become antigen-presenting cells without the use of IFN-gamma opens-up a new line of investigation to search for additional agents capable of converting immune-suppressive MSCs to a cellular tool easily adaptable to vaccination. Graphical abstrac

    Engineering immunoproteasome-expressing mesenchymal stromal cells: A potent cellular vaccine for lymphoma and melanoma in mice

    No full text
    Dendritic cells (DCs) excel at cross-presenting antigens, but their effectiveness as cancer vaccine is limited. Here, we describe a vaccination approach using mesenchymal stromal cells (MSCs) engineered to express the immunoproteasome complex (MSC-IPr). Such modification instills efficient antigen cross-presentation abilities associated with enhanced major histocompatibility complex class I and CD80 expression, de novo production of interleukin-12, and higher chemokine secretion. This cross-presentation capacity of MSC-IPr is highly dependent on their metabolic activity. Compared with DCs, MSC-IPr hold the ability to cross-present a vastly different epitope repertoire, which translates into potent re-activation of T cell immunity against EL4 and A20 lymphomas and B16 melanoma tumors. Moreover, therapeutic vaccination of mice with pre-established tumors efficiently controls cancer growth, an effect further enhanced when combined with antibodies targeting PD-1, CTLA4, LAG3, or 4-1BB under both autologous and allogeneic settings. Therefore, MSC-IPr constitute a promising subset of non-hematopoietic antigen-presenting cells suitable for designing universal cell-based cancer vaccines
    corecore