5 research outputs found
An in silico approach to develop potential therapies against Middle East Respiratory Syndrome Coronavirus (MERS-CoV)
A deadly respiratory disease Middle East Respiratory Syndrome (MERS) is caused by a perilous virus known as MERS-CoV, which has a severe impact on human health. Currently, there is no approved vaccine, prophylaxis, or antiviral therapeutics for preventing MERS-CoV infection. Due to its inexorable and integral role in the maturation and replication of the MERS-CoV virus, the 3C-like protease is unavoidly a viable therapeutic target. In this study, 2369 phytoconstituents were enlisted from Japanese medicinal plants, and these compounds were screened against 3C-like protease to identify feasible inhibitors. The best three compounds were identified as Kihadanin B, Robustaflavone, and 3-beta-O- (trans-p-Coumaroyl) maslinic acid, with binding energies of −9.8, −9.4, and −9.2 kcal/mol, respectively. The top three potential candidates interacted with several active site residues in the targeted protein, including Cys145, Met168, Glu169, Ala171, and Gln192. The best three compounds were assessed by in silico technique to determine their drug-likeness properties, and they exhibited the least harmful features and the greatest drug-like qualities. Various descriptors, such as solvent-accessible surface area, root-mean-square fluctuation, root-mean-square deviation, hydrogen bond, and radius of gyration, validated the stability and firmness of the protein-ligand complexes throughout the 100ns molecular dynamics simulation. Moreover, the top three compounds exhibited better binding energy along with better stability and firmness than the inhibitor (Nafamostat), which was further confirmed by the binding free energy calculation. Therefore, this computational investigation could aid in the development of efficient therapeutics for life-threatening MERS-CoV infections
Plant-based phytochemical screening by targeting main protease of SARS-CoV-2 to design effective potent inhibitors
Currently, a worldwide pandemic has been declared in response to the spread of coronavirus disease 2019 (COVID-19), a fatal and fast-spreading viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The low availability of efficient vaccines and treatment options has resulted in a high mortality rate, bringing the world economy to its knees. Thus, mechanistic investigations of drugs capable of counteracting this disease are in high demand. The main protease (Mpro) expressed by SARS-CoV-2 has been targeted for the development of potential drug candidates due to the crucial role played by Mpro in viral replication and transcription. We generated a phytochemical library containing 1672 phytochemicals derived from 56 plants, which have been reported as having antiviral, antibacterial, and antifungal activity. A molecular docking program was used to screen the top three candidate compounds: epicatechin-3-O-gallate, psi-taraxasterol, and catechin gallate, which had respective binding affinities of −8.4, −8.5, and −8.8 kcal/mol. Several active sites in the targeted protein, including Cys145, His41, Met49, Glu66, and Met165, were found to interact with the top three candidate compounds. The multiple simulation profile, root-mean-square deviation, root-mean-square fluctuation, radius of gyration, and solvent-accessible surface area values supported the inflexible nature of the docked protein–compound complexes. The toxicity and carcinogenicity profiles were assessed, which showed that epicatechin-3-O-gallate, psi-taraxasterol, and catechin gallate had favorable pharmacological properties with no adverse effects. These findings suggest that these compounds could be developed as part of an effective drug development pathway to treat COVID-19
Use of Next-Generation Sequencing for Identifying Mitochondrial Disorders
Mitochondria are major contributors to ATP synthesis, generating more than 90% of the total cellular energy production through oxidative phosphorylation (OXPHOS): metabolite oxidation, such as the β-oxidation of fatty acids, and the Krebs’s cycle. OXPHOS inadequacy due to large genetic lesions in mitochondrial as well as nuclear genes and homo- or heteroplasmic point mutations in mitochondrially encoded genes is a characteristic of heterogeneous, maternally inherited genetic disorders known as mitochondrial disorders that affect multisystemic tissues and organs with high energy requirements, resulting in various signs and symptoms. Several traditional diagnostic approaches, including magnetic resonance imaging of the brain, cardiac testing, biochemical screening, variable heteroplasmy genetic testing, identifying clinical features, and skeletal muscle biopsies, are associated with increased risks, high costs, a high degree of false-positive or false-negative results, or a lack of precision, which limits their diagnostic abilities for mitochondrial disorders. Variable heteroplasmy levels, mtDNA depletion, and the identification of pathogenic variants can be detected through genetic sequencing, including the gold standard Sanger sequencing. However, sequencing can be time consuming, and Sanger sequencing can result in the missed recognition of larger structural variations such as CNVs or copy-number variations. Although each sequencing method has its own limitations, genetic sequencing can be an alternative to traditional diagnostic methods. The ever-growing roster of possible mutations has led to the development of next-generation sequencing (NGS). The enhancement of NGS methods can offer a precise diagnosis of the mitochondrial disorder within a short period at a reasonable expense for both research and clinical applications
Integrated Computational Approaches for Inhibiting Sex Hormone-Binding Globulin in Male Infertility by Screening Potent Phytochemicals
Male infertility is significantly influenced by the plasma-protein sex hormone-binding globulin (SHBG). Male infertility, erectile dysfunction, prostate cancer, and several other male reproductive system diseases are all caused by reduced testosterone bioavailability due to its binding to SHBG. In this study, we have identified 345 phytochemicals from 200 literature reviews that potentially inhibit severe acute respiratory syndrome coronavirus 2. Only a few studies have been done using the SARS-CoV-2 inhibitors to identify the SHBG inhibitor, which is thought to be the main protein responsible for male infertility. In virtual-screening and molecular-docking experiments, cryptomisrine, dorsilurin E, and isoiguesterin were identified as potential SHBG inhibitors with binding affinities of −9.2, −9.0, and −8.8 kcal/mol, respectively. They were also found to have higher binding affinities than the control drug anastrozole (−7.0 kcal/mol). In addition to favorable pharmacological properties, these top three phytochemicals showed no adverse effects in pharmacokinetic evaluations. Several molecular dynamics simulation profiles’ root-mean-square deviation, radius of gyration, root-mean-square fluctuation, hydrogen bonds, and solvent-accessible surface area supported the top three protein–ligand complexes’ better firmness and stability than the control drug throughout the 100 ns simulation period. These combinatorial drug-design approaches indicate that these three phytochemicals could be developed as potential drugs to treat male infertility
Integrated Computational Approaches for Inhibiting Sex Hormone-Binding Globulin in Male Infertility by Screening Potent Phytochemicals
Male infertility is significantly influenced by the plasma-protein sex hormone-binding globulin (SHBG). Male infertility, erectile dysfunction, prostate cancer, and several other male reproductive system diseases are all caused by reduced testosterone bioavailability due to its binding to SHBG. In this study, we have identified 345 phytochemicals from 200 literature reviews that potentially inhibit severe acute respiratory syndrome coronavirus 2. Only a few studies have been done using the SARS-CoV-2 inhibitors to identify the SHBG inhibitor, which is thought to be the main protein responsible for male infertility. In virtual-screening and molecular-docking experiments, cryptomisrine, dorsilurin E, and isoiguesterin were identified as potential SHBG inhibitors with binding affinities of −9.2, −9.0, and −8.8 kcal/mol, respectively. They were also found to have higher binding affinities than the control drug anastrozole (−7.0 kcal/mol). In addition to favorable pharmacological properties, these top three phytochemicals showed no adverse effects in pharmacokinetic evaluations. Several molecular dynamics simulation profiles’ root-mean-square deviation, radius of gyration, root-mean-square fluctuation, hydrogen bonds, and solvent-accessible surface area supported the top three protein–ligand complexes’ better firmness and stability than the control drug throughout the 100 ns simulation period. These combinatorial drug-design approaches indicate that these three phytochemicals could be developed as potential drugs to treat male infertility