257 research outputs found
Spin wave resonances in La_{0.7}Sr_{0.3}MnO_{3} films: measurement of spin wave stiffness and anisotropy field
We studied magnetic field dependent microwave absorption in epitaxial
LaSrMnO films using an X-band Bruker ESR spectrometer. By
analyzing angular and temperature dependence of the ferromagnetic and spin-wave
resonances we determine spin-wave stiffness and anisotropy field. The spin-wave
stiffness as found from the spectrum of the standing spin-wave resonances in
thin films is in fair agreement with the results of inelastic neutron
scattering studies on a single crystal of the same composition [Vasiliu-Doloc
et al., J. Appl. Phys. \textbf{83}, 7343 (1998)].Comment: 15 pages, 7 figures (now figure captions are included
NeuroD1 regulation of migration accompanies the differential sensitivity of neuroendocrine carcinomas to TrkB inhibition
The developmental transcription factor NeuroD1 is anomalously expressed in a subset of aggressive neuroendocrine tumors. Previously, we demonstrated that TrkB and neural cell adhesion molecule (NCAM) are downstream targets of NeuroD1 that contribute to the actions of neurogenic differentiation 1 (NeuroD1) in neuroendocrine lung. We found that several malignant melanoma and prostate cell lines express NeuroD1 and TrkB. Inhibition of TrkB activity decreased invasion in several neuroendocrine pigmented melanoma but not in prostate cell lines. We also found that loss of the tumor suppressor p53 increased NeuroD1 expression in normal human bronchial epithelial cells and cancer cells with neuroendocrine features. Although we found that a major mechanism of action of NeuroD1 is by the regulation of TrkB, effective targeting of TrkB to inhibit invasion may depend on the cell of origin. These findings suggest that NeuroD1 is a lineage-dependent oncogene acting through its downstream target, TrkB, across multiple cancer types, which may provide new insights into the pathogenesis of neuroendocrine cancers
Modification of the ground state in Sm-Sr manganites by oxygen isotope substitution
The effect of O O isotope substitution on electrical
resistivity and magnetic susceptibility of SmSrMnO manganites
is analyzed. It is shown that the oxygen isotope substitution drastically
affects the phase diagram at the crossover region between the ferromagnetic
metal state and that of antiferromagnetic insulator (0.4 0.6), and
induces the metal-insulator transition at for = 0.475 and 0.5. The nature
of antiferromagnetic insulator phase is discussed.Comment: 4 pages, 3 eps figures, RevTeX, submitted to Phys. Rev. Let
Nuclear Magnetic Resonance Study of Ultrananocrystalline Diamonds
We report on a nuclear magnetic resonance (NMR) study of ultrananocrystalline
diamond (UNCD) materials produced by detonation technique. Analysis of the 13C
and 1H NMR spectra, spin-spin and spin-lattice relaxation times in purified
UNCD samples is presented. Our measurements show that UNCD particles consist of
a diamond core that is partially covered by a sp2-carbon fullerene-like shell.
The uncovered part of outer diamond surface comprises a number of hydrocarbon
groups that saturate the dangling bonds. Our findings are discussed along with
recent calculations of the UNCD structure. Significant increase in the
spin-lattice relaxation rate (in comparison with that of natural diamond), as
well as stretched exponential character of the magnetization recovery, are
attributed to the interaction of nuclear spins with paramagnetic centers which
are likely fabrication-driven dangling bonds with unpaired electrons. We show
that these centers are located mainly at the interface between the diamond core
and shell.Comment: 25 pages, 7 figure
Adult women and ADHD: on the temporal dimensions of ADHD identities
This paper uses conceptual resources drawn psychosocial process thinking (Stenner, 2017, Brown and Reavey, 2015, Brown and Stenner, 2009) and from G.H. Mead in particular, to contribute to an emerging body of work on the experiences of adult women with ADHD (Singh, 2002, Waite and Ivey, 2009, Quinn and Madhoo, 2014, Horton-Salway and Davies, 2018). It has a particular focus on how ADHD features in the construction of women’s identities and life-stories and it draws upon findings from a qualitative investigation of adult women diagnosed or self-diagnosed with Attention Deficit Hyperactivity Disorder (ADHD). A theoretically informed ‘thematic decomposition’ of 16 depth interviews reveals how complex processes of identity transformation are mediated by the social category of ADHD. Through this process, pasts are reconstructed from the perspective of an ‘emergent’ identity that offers participants the potential for a more enabling and positive future
Expression of methylation-related genes is associated with overall survival in patients with non-small cell lung cancer
The abnormality of DNA methylation is involved in tumour progression, and thus has a modulating effect on clinical outcome of cancer patients. In this study, we measured the mRNA expression levels of three methylation-regulating genes (DNMT1, DNMT3b, and MBD2) in 148 tumour samples from patients with non-small cell lung cancer (NSCLC) using quantitative real-time polymerase chain reaction and then determined their prognostic values. Our data showed that the high level of DNMT1 expression was significantly associated with an increased risk of death in all NSCLC patients (hazard ratio (HR), 1.74; 95% confidence interval (95% CI), 1.04–2.90). However, the high level of DNMT3b expression was significantly associated with poor prognosis only in young patients (<65 years). The high level of MBD2 expression had a significantly reduced risk for death only in male patients and in squamous cell lung carcinoma (SQLC) patients. All three combination groups with DNMT1 and DNMT3b, DNMT1 and MBD2 or DNMT3b and MBD2 revealed significant combined effects in male patients and SQLC patients. Our results suggest that DNMT1, DNMT3b, and MBD2 may play important roles in modulating NSCLC patient survival and thus be useful for identifying NSCLC patients who would benefit most from aggressive therapy
Progression of Pathogenic Events in Cynomolgus Macaques Infected with Variola Virus
Smallpox, caused by variola virus (VARV), is a devastating human disease that affected millions worldwide until the virus was eradicated in the 1970 s. Subsequent cessation of vaccination has resulted in an immunologically naive human population that would be at risk should VARV be used as an agent of bioterrorism. The development of antivirals and improved vaccines to counter this threat would be facilitated by the development of animal models using authentic VARV. Towards this end, cynomolgus macaques were identified as adequate hosts for VARV, developing ordinary or hemorrhagic smallpox in a dose-dependent fashion. To further refine this model, we performed a serial sampling study on macaques exposed to doses of VARV strain Harper calibrated to induce ordinary or hemorrhagic disease. Several key differences were noted between these models. In the ordinary smallpox model, lymphoid and myeloid hyperplasias were consistently found whereas lymphocytolysis and hematopoietic necrosis developed in hemorrhagic smallpox. Viral antigen accumulation, as assessed immunohistochemically, was mild and transient in the ordinary smallpox model. In contrast, in the hemorrhagic model antigen distribution was widespread and included tissues and cells not involved in the ordinary model. Hemorrhagic smallpox developed only in the presence of secondary bacterial infections – an observation also commonly noted in historical reports of human smallpox. Together, our results support the macaque model as an excellent surrogate for human smallpox in terms of disease onset, acute disease course, and gross and histopathological lesions
Fault diagnosis for uncertain networked systems
Fault diagnosis has been at the forefront of technological developments for several decades. Recent advances in many engineering fields have led to the networked interconnection of various systems. The increased complexity of modern systems leads to a larger number of sources of uncertainty which must be taken into consideration and addressed properly in the design of monitoring and fault diagnosis architectures. This chapter reviews a model-based distributed fault diagnosis approach for uncertain nonlinear large-scale networked systems to specifically address: (a) the presence of measurement noise by devising a filtering scheme for dampening the effect of noise; (b) the modeling of uncertainty by developing an adaptive learning scheme; (c) the uncertainty issues emerging when considering networked systems such as the presence of delays and packet dropouts in the communication networks. The proposed architecture considers in an integrated way the various components of complex distributed systems such as the physical environment, the sensor level, the fault diagnosers, and the communication networks. Finally, some actions taken after the detection of a fault, such as the identification of the fault location and its magnitude or the learning of the fault function, are illustrated
- …