3 research outputs found

    Selection of Pyramided Barley Advanced Lines for Stripe Rust, Leaf Rust and Crown Rust Diseases Using Molecular Markers

    Get PDF
    Barley diseases are the major yield limiting factors for barley cultivation in Nepal. Stripe/Yellow rust (P. striformis f.sp. hordei and P. striformis f.sp. tritici), leaf rust (Puccinia hordei), and crown rust (P. coronata) are the major rust diseases in Nepal. Pyramiding resistance genes against all these rust diseases are possible through molecular marker assisted breeding. Sweden originated barley variety ‘Bonus’ is found resistant to stripe rust and having linked microsatellite markers for stripe rust and crown rust resistance. Similarly, Nepalese hull-less barley variety ‘Solu Uwa’ and Nepalese awn-less barley landrace NPGR Acc# 2478 have linked microsatellite markers for leaf rust resistance. Therefore, one polymorphic sequence tagged sites (STS) marker (ABG054) for stripe rust resistance, two polymorphic simple sequence repeats (SSR) markers (Bmac0144h and HVM049) for leaf rust and one polymorphic SSR marker (Bmag0006) for crown rust resistance were used to select the advanced barley lines (at F8 stage) from above parents. Field screening of stripe rust resistance was also conducted. Among 51 advanced and field disease resistance lines from Bonus/Solu Uwa cross, we have selected 10 pyramided lines for all three types of barley rust resistance. Similarly, among 39 advanced and field disease resistance lines from Bonus/NPGR Acc#2478 cross we have selected three pyramided lines and advanced for further yield testing for general cultivation purpose. The chances of losing the desired gene are high in late generation selection using molecular marker assisted selection (MAS); but the chances of getting agronomically superior varietal output will also increase

    Preservation of In Vitro Grown Shoot Tips of Potato (Solanum tuberosum L.) by Different Methods of Cryopreservation

    No full text
    Cryopreservation has been recognized as a practical and efficient tool for long-term storage of vegetatively propagated plants. This study was conducted to investigate the effects of sucrose concentration, hardening temperature and different cryopreservation methods on the survival rate of potato shoot tips after cryopreservation. Excised shoot tips of in vitro plantlets of potato cultivars, Atlantic and Superior were cryopreserved by vitrification, encapsulationvitrification and encapsulation-dehydration. Cryopreservation by vitrification method was used to determine the optimum concentration of sucrose and cold hardening temperature during sub-culturing period to the donor plantlets. Nine-percent sucrose gave 46.7 % survival in Atlantic and 40 % in Superior. The most optimum hardening temperature for 50 % survival in Atlantic and 43.3 % in Superior was 10°C. In the case of comparative study of three different cryopreservation methods, the highest survival (52%) as well as regeneration (46%) were observed when the shoot tips were cryopreserved by encapsulation-vitrification method, and the lowest survival (36%) and regeneration (28%) from the vitrification. Plant and tuber morphology of potato regenerated after cryopreservation were similar to those of the non-cryopreserved in vitro plantlets (control). Thus, this study demonstrated that encapsulation-vitrification method was the most effective one among other methods for higher survival as well as regeneration in in vitro shoot tips of potato
    corecore