43 research outputs found

    Therapeutic cancer vaccination against mutant calreticulin in myeloproliferative neoplasms induces expansion of specific T cells in the periphery but specific T cells fail to enrich in the bone marrow

    Get PDF
    BackgroundTherapeutic cancer vaccination against mutant calreticulin (CALR) in patients with CALR-mutant (CALRmut) myeloproliferative neoplasms (MPN) induces strong T-cell responses against mutant CALR yet fails to demonstrate clinical activity. Infiltration of tumor specific T cells into the tumor microenvironment is needed to attain a clinical response to therapeutic cancer vaccination.AimDetermine if CALRmut specific T cells isolated from vaccinated patients enrich in the bone marrow upon completion of vaccination and explore possible explanations for the lack of enrichment.MethodsCALRmut specific T cells from four of ten vaccinated patients were expanded, enriched, and analyzed by T-cell receptor sequencing (TCRSeq). The TCRs identified were used as fingerprints of CALRmut specific T cells. Bone marrow aspirations from the four patients were acquired at baseline and at the end of trial. T cells were enriched from the bone marrow aspirations and analyzed by TCRSeq to identify the presence and fraction of CALRmut specific T cells at the two different time points. In silico calculations were performed to calculate the ratio between transformed cells and effector cells in patients with CALRmut MPN.ResultsThe fraction of CALRmut specific T cells in the bone marrow did not increase upon completion of the vaccination trial. In general, the T cell repertoire in the bone marrow remains relatively constant through the vaccination trial. The enriched and expanded CALRmut specific T cells recognize peripheral blood autologous CALRmut cells. In silico analyses demonstrate a high imbalance in the fraction of CALRmut cells and CALRmut specific effector T-cells in peripheral blood.ConclusionCALRmut specific T cells do not enrich in the bone marrow after therapeutic cancer peptide vaccination against mutant CALR. The specific T cells recognize autologous peripheral blood derived CALRmut cells. In silico analyses demonstrate a high imbalance between the number of transformed cells and CALRmut specific effector T-cells in the periphery. We suggest that the high burden of transformed cells in the periphery compared to the number of effector cells could impact the ability of specific T cells to enrich in the bone marrow

    Natural CD4+ T-Cell Responses against Indoleamine 2,3-Dioxygenase

    Get PDF
    The enzyme indoleamine 2,3-dioxygenase (IDO) contributes to immune tolerance in a variety of settings. In cancer IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it endorses the establishment of peripheral immune tolerance to tumor antigens. Recently, we described cytotoxic CD8(+) T-cell reactivity towards IDO-derived peptides.In the present study, we show that CD4(+) helper T cells additionally spontaneously recognize IDO. Hence, we scrutinized the vicinity of the previously described HLA-A*0201-restricted IDO-epitope for CD4(+) T-cell epitopes. We demonstrated the presence of naturally occurring IDO-specific CD4(+) T cells in cancer patients and to a lesser extent in healthy donors by cytokine release ELISPOT. IDO-reactive CD4(+) T cells released IFN-γ, TNF-α, as well as IL-17. We confirm HLA class II-restriction by the addition of HLA class II specific blocking antibodies. In addition, we detected a trend between class I- and class II-restricted IDO responses and detected an association between IDO-specific CD4(+) T cells and CD8(+) CMV-responses. Finally, we could detect IL-10 releasing IDO-reactive CD4(+) T cells.IDO is spontaneously recognized by HLA class II-restricted, CD4(+) T cells in cancer patients and in healthy individuals. IDO-specific T cells may participate in immune-regulatory networks where the activation of pro-inflammatory IDO-specific CD4(+) responses may well overcome or delay the immune suppressive actions of the IDO-protein, which are otherwise a consequence of the early expression of IDO in maturing antigen presenting cells. In contrast, IDO-specific regulatory T cells may enhance IDO-mediated immune suppression

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    PD-L1-specific T cells

    No full text

    The immune checkpoint regulator PD-L1 is a specific target for naturally occurring CD4(+) T cells

    Get PDF
    Programmed cell death 1 ligand 1 (PD-L1) is an important regulator of T-cell responses and may consequently limit anticancer immunity. We have recently identified PD-L1-specific, cytotoxic CD8(+) T cells. In the present study, we develop these findings and report that CD4(+) helper T cells spontaneously recognize PD-L1. We examined the locality of a previously identified HLA-A*0201-restricted PD-L1-epitope for the presence of possible CD4(+) T-cell epitopes. Thus, we identified naturally occurring PD-L1-specific CD4(+) T cells among the peripheral blood lymphocytes of cancer patients and - to lesser extents - healthy donors, by means of ELISPOT assays. PD-L1-specific CD4(+) T cells appeared to be T(H)17 cells exhibiting an effector T-cell cytokine profile. Hence, PD-L1-specific CD4(+) T cells released interferon γ (IFNγ), tumor necrosis factor α (TNFα) and interleukin-17 (IL-17) in response to a long PD-L1-derived peptide. Furthermore, we demonstrate that the specific recognition of PD-L1 by CD4(+) T cells is MHC class II-restricted. Natural T-cell responses against PD-L1 are noteworthy as they may play a prominent role in the regulation of the immune system. Thus, cytokine release from PD-L1-specific CD4(+) T cells may surmount the overall immunosuppressive actions of this immune checkpoint regulator. Moreover, PD-L1-specific T cells might be useful for anticancer immunotherapy, as they may counteract common mechanisms of immune escape mediated by the PD-L1/PD-1 pathway

    Characterization of T-cell responses against IκBα in cancer patients

    Get PDF
    The nuclear factor κ light chain enhancer of activated B cells (NFκB) is constitutively active in most cancers, controlling multiple cellular processes including proliferation, invasion and resistance to therapy. NFκB is primarily regulated through the association with inhibitory proteins that are known as inhibitors of NFκB (IκBs). Increased NFκB activity in tumor cells has been correlated with decrease stability of IκB proteins, in particular IκBα. In responso to a large number of stimuli, IκB proteins are degraded by the proteasome. Cytotoxic T lymphocytes (CTLs) recognize HLA-restricted antigenic peptides that are generated by proteasomal degradation in target cells. In the present study, we demonstrate the presence of naturally occurring IκBα -specific T cells in the peripheral blood of patients suffering from several unrelated tumor types, i.e., breast cancer, malignant melanoma and renal cell carcinoma, but not of healthy controls. Furthermore, we show that such IBα-specific T cells are granzyme B-releasing, cytotoxic cells. Hence, the increased proteasomal degradation of IκBα in cancer induces IκBα-specific CTLs

    Peptide vaccination against multiple myeloma using peptides derived from anti-apoptotic proteins:a phase I trial

    No full text
    The B-cell lymphoma-2 (Bcl-2) family of proteins play a crucial role in multiple myeloma (MM), contributing to lacking apoptosis which is a hallmark of the disease. This makes the Bcl-2 proteins interesting targets for therapeutic peptide vaccination. We report a phase I trial of therapeutic vaccination with peptides from the proteins Bcl-2, Bcl-X(L) and Mcl-1 in patients with relapsed MM. Vaccines were given concomitant with bortezomib. Out of 7 enrolled patients, 4 received the full course of 8 vaccinations. The remaining 3 patients received fewer vaccinations due to progression, clinical decision of lacking effect and development of hypercalcemia, respectively. There were no signs of toxicity other than what was to be expected from bortezomib. Immune responses to the peptides were seen in all 6 patients receiving more than 2 vaccinations. Three patients had increased immune responses after vaccination. Vaccination against Bcl-2 was well tolerated and was able to induce immune responses in patients with relapsed MM
    corecore