51 research outputs found
One-Pot Synthesis of nickel-modified carbon nitride layers toward efficient photoelectrochemical cells
[EN] A new method to significantly enhance the photoelectrochemical properties of phenyl-modified carbon nitride layers via the insertion of nickel ions into carbon nitride layers is reported. The nickel ions: are embedded within the carbon nitride layers by manipulating the interaction of Ni ions and molten organic molecules at elevated temperature prior to their condensation. A detailed analysis of the chemical and photophysical properties suggests that the nickel ions dissolve in the molten molecules, leading to the homogeneous distribution of nickel atoms within the carbon nitride layers. We found that the nickel atoms can alter the growth mechanism of carbon nitride layers, resulting in extended light absorption, charge transfer properties, and the total photoelectrochemical performance. For the most photoactive electrode, the Ni ions have an oxidation state of 2.8, as confirmed by soft X-ray absorption spectroscopy. Furthermore, important parameters such as absorption coefficient, exciton lifetime, and diffusion length were studied in depth, providing substantial progress in our understanding of the photoelectrochemical properties of carbon nitride films. This work opens new opportunities for the growth of carbon nitride layers and similar materials on different surfaces and provides important progress in our understanding of the photophysical and photoelectrochemical properties of carbon nitride layers toward their implantation in photoelectronic and other devices.We thank the use Katz Institute for Nanoscale Science & Technology Ben Gurion University for HR-TEM measurements. M.S. thanks Dr. Laurent Chabanne for fruitful discussion. K.M.L. is grateful for the support by the Helmholtz Association (VH-NG-1140).Zhang, W.; Albero-Sancho, J.; Xi, L.; Lange, KM.; GarcĂa GĂłmez, H.; Wang, X.; Shalom, M. (2017). One-Pot Synthesis of nickel-modified carbon nitride layers toward efficient photoelectrochemical cells. ACS Applied Materials & Interfaces. 9(38):32667-32677. https://doi.org/10.1021/acsami.7b08022S326673267793
Long-Term Characterization of Oxidation Processes in Graphitic Carbon Nitride Photocatalyst Materials via Electron Paramagnetic Resonance Spectroscopy
Graphitic carbon nitride (gCN) materials have been shown to efficiently perform light-induced water splitting, carbon dioxide reduction, and environmental remediation in a cost-effective way. However, gCN suffers from rapid charge-carrier recombination, inefficient light absorption, and poor long-term stability which greatly hinders photocatalytic performance. To determine the underlying catalytic mechanisms and overall contributions that will improve performance, the electronic structure of gCN materials has been investigated using electron paramagnetic resonance (EPR) spectroscopy. Through lineshape analysis and relaxation behavior, evidence of two independent spin species were determined to be present in catalytically active gCN materials. These two contributions to the total lineshape respond independently to light exposure such that the previously established catalytically active spin system remains responsive while the newly observed, superimposed EPR signal is not increased during exposure to light. The time dependence of these two peaks present in gCN EPR spectra recorded sequentially in air over several months demonstrates a steady change in the electronic structure of the gCN framework over time. This light-independent, slowly evolving additional spin center is demonstrated to be the result of oxidative processes occurring as a result of exposure to the environment and is confirmed by forced oxidation experiments. This oxidized gCN exhibits lower H2 production rates and indicates quenching of the overall gCN catalytic activity over longer reaction times. A general model for the newly generated spin centers is given and strategies for the alleviation of oxidative products within the gCN framework are discussed in the context of improving photocatalytic activity over extended durations as required for future functional photocatalytic device development
Unprecedented Centimeter-Long Carbon Nitride Needles: Synthesis, Characterization and Applications
This is the peer reviewed version of the following article: Barrio, J., Lin, L., AmoâOchoa, P., Tzadikov, J., Peng, G., Sun, J., ... & Shalom, M. (2018). Unprecedented CentimeterâLong Carbon Nitride Needles: Synthesis, Characterization and Applications. Small, 14(21), 1800633, which has been published in final form at https://doi.org/10.1002/smll.201800633.
This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived VersionsFree standing centimeter-long 1D nanostructures are highly attractive for electronic and optoelectronic devices due to their unique photophysical and electrical properties. Here a simple, large-scale synthesis of centimeter-long 1D carbon nitride (CN) needles with tunable photophysical, electric, and catalytic properties is reported. Successful growth of ultralong needles is acquired by the utilization of 1D organic crystal precursors comprised of CN monomers as reactants. Upon calcination at high temperatures, the shape of the starting crystal is fully preserved while the CN composition and porosity, and optical and electrical properties can be easily tuned by tailoring the starting elements ratio and final calcination temperature. The facile manipulation and visualization of the CN needles endow their direct electrical measurements by placing them between two conductive probes. Moreover, the CN needles exhibit good photocatalytic activity for hydrogen production owing to their improved light harvesting properties, high surface area, and advantageous energy bands position. The new growth strategy developed here may open opportunities for a rational design of CN and other metal-free materials with controllable directionality and tunable photophysical and electronic properties, toward their utilization in (photo)electronic devices.The authors thank Dr. Alex Upcher and Dr. Einat Nativ-Roth for their assistance with electronic microscopy analysis. The authors thank also the financial support from the Spanish Ministerio de EconomĂa y Competitividad (MAT2016-77608-C3-1-P). The authors thank Dr. Hod for fruitful discussio
Electrophoretic deposition of antimonene for photoelectrochemical applications
Antimonene is a recently developed two-dimensional material with outstanding expected physical properties based on theoretical calculations. Liquid phase-exfoliation has become the most straight forward preparation method to produce stable antimonene suspensions. However, the processing and deposition on substrates of antimonene is still required towards its exploitation in various fields, as current challenges in this research area. Despite the high current research interest in antimonene, the fabrication of Sb-films and its utilization in photoelectrochemical devices remains still unexplored. Herein, the electrophoretic deposition of antimonene on different substrates and its activity as absorber and hole acceptor layer in photoelectrochemical cell (PEC) is reported. The obtained results confirm that the photoelectrochemical performance of the antimonene films electrophoretically deposited on titanium dioxide exhibits an enhanced optical absorption and charge separation properties, compared to pristine TiO2 films. Furthermore, electrochemical measurements reveal that the antimonene films act as hole acceptor layers, enabling better PEC performance
Photoactive graphitic carbon nitrideâbased gel beads as recyclable photocatalysts
Photocatalysis for clean hydrogen production and waste water remediation holds a great promise on society. However, despite the significant progress in this field the recyclability of the photocatalytic materials together with good photoactivity remain a great challenge. photocatalytic materials for waste water cleaning and hydrogen production based on the utilization of photoactive macrogel beads as the photocatalyst. To do so, we design a graphitic carbon nitride based macrogels with tailored size, swelling behavior and photocatalytic properties. Detailed studies reveal that the catalytic activity is correlated with the polymer particle size, g-C3N4 content and swelling behavior, enabling the optimization of the photocatalytic processes. We believe that the presented strategy together with the good photocatalytic activity and excellent recyclability constitute open the path for a substantial progress in this field
NC Meets CN: Porous Photoanodes with Polymeric Carbon Nitride/ZnSe Nanocrystal Heterojunctions for Photoelectrochemical Applications
[EN] The utilization of photoelectrochemical cells (PEC) for converting solar energy into fuels (e.g., hydrogen) is a promising method for sustainable energy generation. We demonstrate a strategy to enhance the performance of PEC devices by integrating surface-functionalized zinc selenide (ZnSe) semiconductor nanocrystals (NCs) into porous polymeric carbon nitride (CN) matrices to form a uniformly distributed blend of NCs within the CN layer via electrophoretic deposition (EPD). The achieved type II heterojunction at the CN/NC interface exhibits intimate contact between the NCs and the CN backbone since it does not contain insulating binders. This configuration promotes efficient charge separation and suppresses carrier recombination. The reported CN/NC composite structure serves as a photoanode, demonstrating a photocurrent density of 160 +/- 8 mu A cm(-2 )at 1.23 V vs a reversible hydrogen electrode (RHE), 75% higher compared with a CN-based photoelectrode, for approximately 12 h. Spectral and photoelectrochemical analyses reveal extended photoresponse, reduced charge recombination, and successful charge transfer at the formed heterojunction; these properties result in enhanced PEC oxygen production activity with a Faradaic efficiency of 87%. The methodology allows the integration of high-quality colloidal NCs within porous CN-based photoelectrodes and provides numerous knobs for tuning the functionality of the composite systems, thus showing promise for achieving enhanced solar fuel production using PEC.This project was supported by the Israeli Ministry of Science and Technology, Grant No. 0004809.Mondal, S.; Naor, T.; Volokh, M.; Stone, D.; Albero-Sancho, J.; Levi, A.; Vakahi, A.... (2024). NC Meets CN: Porous Photoanodes with Polymeric Carbon Nitride/ZnSe Nanocrystal Heterojunctions for Photoelectrochemical Applications. ACS Applied Materials & Interfaces. 16(29):38153-38162. https://doi.org/10.1021/acsami.4c075823815338162162
Synthesis of metal-free lightweight materials with sequence-encoded properties
[EN] A high-temperature solid-state synthesis is a widespread tool for the construction of metal-free materials, owing to its simplicity and scalability. However, no method is currently available for the synthesis of metal-free materials, which enables control over the atomic ratio and spatial organization of several heteroatoms. Here we report a general and large-scale synthesis of phosphorus-nitrogen-carbon (PNC) materials with highly controllable elemental composition and structural, electronic, and thermal stability properties. To do so, we designed four different crystals consisting of melamine and phosphoric acid with different monomers sequences as the starting precursors. The monomer sequence of the crystals is preserved upon calcination (up to 800 degrees C) to an unprecedented degree, which leads to precise control over the composition of the final PNC materials. The latter exhibit a remarkable stability up to 970 degrees C in air, positioning them as sustainable, lightweight supports for catalysts in high-temperature reactions as well as halogen-free fire-retardant materials.The authors would like to thank Dr Volodiya Ezersky, Dr Natalya Froumin, Dr Anna Milionshchik, Dr Radion Vainer, Dr Einat Nativ-Roth, and Mr Nitzan Shauloff for analytical HRTEM, XPS, TGA, SC-XRD, HRSEM, and technical support, respectively. This research was partly funded by the following: the Planning & Budgeting Committee/Israel Council for Higher Education (CHE) and Fuel Choice Initiative (Prime Minister Office of Israel), within the framework of "Israel National Research Center for Electrochemical Propulsion" (INREP); the Minerva Center No. 117873; the Spanish Ministerio de Economia y Competitividad (MAT2016-77608-C3-1-P, MAT2016-75883-C2-2-P); J. A. and H. G. also gratefully acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV2016-0683 and RTI2018-89023-CO2-R1) and by the Generalitat Valenciana (Prometeo 2017-083). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement No. [849068]). NMR spectroscopic calculations were performed using HPC resources from GENCI-IDRIS (Grant 097535). The French Region Ile de France-SESAME program is acknowledged for financial support (700 MHz spectrometer).Azoulay, A.; Barrio, J.; Tzadikov, J.; Volokh, M.; Albero-Sancho, J.; Gervais, C.; Amo-Ochoa, P.... (2020). Synthesis of metal-free lightweight materials with sequence-encoded properties. Journal of Materials Chemistry A. 8(17):8752-8760. https://doi.org/10.1039/d0ta03162c87528760817Paraknowitsch, J. P., & Thomas, A. (2013). Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science, 6(10), 2839. doi:10.1039/c3ee41444bGates, D. P. (2003). Chemistry and Applications of Polyphosphazenes. By Harry R. Allcock. Angewandte Chemie International Edition, 42(38), 4570-4570. doi:10.1002/anie.200385981Cruz-Silva, E., Cullen, D. A., Gu, L., Romo-Herrera, J. M., Muñoz-Sandoval, E., LĂłpez-UrĂas, F., ⊠Terrones, M. (2008). Heterodoped Nanotubes: Theory, Synthesis, and Characterization of PhosphorusâNitrogen Doped Multiwalled Carbon Nanotubes. ACS Nano, 2(3), 441-448. doi:10.1021/nn700330wZhang, W., Barrio, J., Gervais, C., Kocjan, A., Yu, A., Wang, X., & Shalom, M. (2018). Synthesis of Carbon-Nitrogen-Phosphorous Materials with an Unprecedented High Amount of Phosphorous toward an Efficient Fire-Retardant Material. Angewandte Chemie International Edition, 57(31), 9764-9769. doi:10.1002/anie.201805279Velencoso, M. M., Battig, A., Markwart, J. C., Schartel, B., & Wurm, F. R. (2018). Molecular FirefightingâHow Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy. Angewandte Chemie International Edition, 57(33), 10450-10467. doi:10.1002/anie.201711735Li, C., Chen, Z., Kong, A., Ni, Y., Kong, F., & Shan, Y. (2018). High-rate oxygen electroreduction over metal-free graphene foams embedding PâN coupled moieties in acidic media. Journal of Materials Chemistry A, 6(9), 4145-4151. doi:10.1039/c7ta08186cChaplin, A. B., Harrison, J. A., & Dyson, P. J. (2005). Revisiting the Electronic Structure of Phosphazenes. Inorganic Chemistry, 44(23), 8407-8417. doi:10.1021/ic0511266Guo, S., Deng, Z., Li, M., Jiang, B., Tian, C., Pan, Q., & Fu, H. (2015). Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. Angewandte Chemie International Edition, 55(5), 1830-1834. doi:10.1002/anie.201508505Feng, L.-L., Zou, Y., Li, C., Gao, S., Zhou, L.-J., Sun, Q., ⊠Zou, X. (2014). Nanoporous sulfur-doped graphitic carbon nitride microrods: A durable catalyst for visible-light-driven H 2 evolution. International Journal of Hydrogen Energy, 39(28), 15373-15379. doi:10.1016/j.ijhydene.2014.07.160Barrio, J., Lin, L., Amo-Ochoa, P., Tzadikov, J., Peng, G., Sun, J., ⊠Shalom, M. (2018). Unprecedented Centimeter-Long Carbon Nitride Needles: Synthesis, Characterization and Applications. Small, 14(21), 1800633. doi:10.1002/smll.201800633Faul, C. F. J., & Antonietti, M. (2003). Ionic Self-Assembly: Facile Synthesis of Supramolecular Materials. Advanced Materials, 15(9), 673-683. doi:10.1002/adma.200300379Barrio, J., & Shalom, M. (2018). Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers. ChemCatChem, 10(24), 5573-5586. doi:10.1002/cctc.201801410De Ridder, D. J. A., Goubitz, K., Brodski, V., Peschar, R., & Schenk, H. (2004). Crystal Structure of Melaminium Orthophosphate from High-Resolution Synchrotron Powder-Diffraction Data. Helvetica Chimica Acta, 87(7), 1894-1905. doi:10.1002/hlca.200490168Li, X.-M., Feng, S.-S., Wang, F., Ma, Q., & Zhu, M.-L. (2009). Bis(2,4,6-triamino-1,3,5-triazin-1-ium) hydrogen phosphate trihydrate. Acta Crystallographica Section E Structure Reports Online, 66(1), o239-o240. doi:10.1107/s1600536809054798JĂŒrgens, B., Irran, E., Senker, J., Kroll, P., MĂŒller, H., & Schnick, W. (2003). Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride:â Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies. Journal of the American Chemical Society, 125(34), 10288-10300. doi:10.1021/ja0357689Barrio, J., GrafmĂŒller, A., Tzadikov, J., & Shalom, M. (2018). Halogen-hydrogen bonds: A general synthetic approach for highly photoactive carbon nitride with tunable properties. Applied Catalysis B: Environmental, 237, 681-688. doi:10.1016/j.apcatb.2018.06.043Zhao, Y. C., Yu, D. L., Zhou, H. W., Tian, Y. J., & Yanagisawa, O. (2005). Turbostratic carbon nitride prepared by pyrolysis of melamine. Journal of Materials Science, 40(9-10), 2645-2647. doi:10.1007/s10853-005-2096-3Naik, A. D., Fontaine, G., Samyn, F., Delva, X., Louisy, J., Bellayer, S., ⊠Bourbigot, S. (2014). Outlining the mechanism of flame retardancy in polyamide 66 blended with melamine-poly(zinc phosphate). Fire Safety Journal, 70, 46-60. doi:10.1016/j.firesaf.2014.08.019Guo, M., Huang, J., Kong, X., Peng, H., Shui, H., Qian, F., ⊠Zhang, Q. (2016). Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries. New Carbon Materials, 31(3), 352-362. doi:10.1016/s1872-5805(16)60019-7Wu, J., Yang, S., Li, J., Yang, Y., Wang, G., Bu, X., ⊠Xie, X. (2016). Electron Injection of Phosphorus Doped g-C3N4Quantum Dots: Controllable Photoluminescence Emission Wavelength in the Whole Visible Light Range with High Quantum Yield. Advanced Optical Materials, 4(12), 2095-2101. doi:10.1002/adom.201600570Fukushima, A., Hayashi, A., Yamamura, H., & Tatsumisago, M. (2017). Mechanochemical synthesis of high lithium ion conducting solid electrolytes in a Li2S-P2S5-Li3N system. Solid State Ionics, 304, 85-89. doi:10.1016/j.ssi.2017.03.010Xie, M., Tang, J., Kong, L., Lu, W., Natarajan, V., Zhu, F., & Zhan, J. (2019). Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation. Chemical Engineering Journal, 360, 1213-1222. doi:10.1016/j.cej.2018.10.130Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., & Balandin, A. A. (2014). Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. Journal of Power Sources, 248, 37-43. doi:10.1016/j.jpowsour.2013.08.135Wulff, G., Schmidt, H., & Zhu, L. (1999). Generating hydrophilic surfaces on standard polymers after copolymerization with low amounts of protected vinyl sugars. Macromolecular Chemistry and Physics, 200(4), 774-782. doi:10.1002/(sici)1521-3935(19990401)200:43.0.co;2-jXu, J., Zhang, L., Shi, R., & Zhu, Y. (2013). Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry A, 1(46), 14766. doi:10.1039/c3ta13188bKulkarni, G. U., Laruelle, S., & Roberts, M. W. (1996). The oxygen state active in the catalytic oxidation of carbon monoxide at a caesium surface: isolation of the reactive anionic CO2ÎŽâspecies. Chem. Commun., (1), 9-10. doi:10.1039/cc9960000009Wang, L., Wang, C., Hu, X., Xue, H., & Pang, H. (2016). Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications. Chemistry - An Asian Journal, 11(23), 3305-3328. doi:10.1002/asia.201601178Barrio, J., Mateo, D., Albero, J., GarcĂa, H., & Shalom, M. (2019). A Heterogeneous Carbon NitrideâNickel Photocatalyst for Efficient LowâTemperature CO
2
Methanation. Advanced Energy Materials, 9(44), 1902738. doi:10.1002/aenm.201902738Alrafei, B., Polaert, I., Ledoux, A., & Azzolina-Jury, F. (2020). Remarkably stable and efficient Ni and Ni-Co catalysts for CO2 methanation. Catalysis Today, 346, 23-33. doi:10.1016/j.cattod.2019.03.026Yang Lim, J., McGregor, J., Sederman, A. J., & Dennis, J. S. (2016). Kinetic studies of CO 2 methanation over a Ni/ Îł -Al 2 O 3 catalyst using a batch reactor. Chemical Engineering Science, 141, 28-45. doi:10.1016/j.ces.2015.10.026Mateo, D., Albero, J., & GarcĂa, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 224, 563-571. doi:10.1016/j.apcatb.2017.10.071Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726Sheldrick, G. M. (2015). SHELXTâ Integrated space-group and crystal-structure determination. Acta Crystallographica Section A Foundations and Advances, 71(1), 3-8. doi:10.1107/s2053273314026370Sheldrick, G. M. (2015). Crystal structure refinement withSHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3-8. doi:10.1107/s2053229614024218Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metalâamorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251Pack, J. D., & Monkhorst, H. J. (1977). «Special points for Brillouin-zone integrations»âa reply. Physical Review B, 16(4), 1748-1749. doi:10.1103/physrevb.16.1748Blöchl, P. E., Jepsen, O., & Andersen, O. K. (1994). Improved tetrahedron method for Brillouin-zone integrations. Physical Review B, 49(23), 16223-16233. doi:10.1103/physrevb.49.16223Baroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515-562. doi:10.1103/revmodphys.73.515Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3), 1993-2006. doi:10.1103/physrevb.43.1993Kleinman, L., & Bylander, D. M. (1982). Efficacious Form for Model Pseudopotentials. Physical Review Letters, 48(20), 1425-1428. doi:10.1103/physrevlett.48.1425Pickard, C. J., & Mauri, F. (2001). All-electron magnetic response with pseudopotentials: NMR chemical shifts. Physical Review B, 63(24). doi:10.1103/physrevb.63.245101Lejaeghere, K., Bihlmayer, G., Björkman, T., Blaha, P., BlĂŒgel, S., Blum, V., ⊠Dal Corso, A. (2016). Reproducibility in density functional theory calculations of solids. Science, 351(6280). doi:10.1126/science.aad300
Design and synthesis of TiO2/C nanosheets with a directional cascade carrier transfer
Directed transfer of carriers, akin to excited charges in photosynthesis, in semiconductors by structural design is challenging. Here, TiO2 nanosheets with interlayered sp2 carbon and titanium vacancies are obtained by low-temperature controlled oxidation calcination. The directed transfer of carriers from the excited position to Ti-vacancies to interlayered carbon is investigated and proven to greatly increase the charge transport efficiency. The TiO2/C obtained demonstrates excellent photocatalytic and photoelectrochemical activity and significant lithium/sodium ion storage performance. Further theoretical calculations reveal that the directional excited position/Ti-vacancies/interlayered carbon facilitate the spatial inside-out cascade electron transfer, resulting in high charge transfer kinetics. © 2022 The Royal Society of Chemistry
Conjugated carbon nitride as an emerging luminescent material: Quantum dots, thin films and their applications in imaging, sensing, optoelectronic devices and photoelectrochemistry
Over the past few years, graphitic/polymeric carbon nitride (CN) has attracted widespread attention due to its interesting electronic properties, which have been exploited in various applications, including, for example, in photoâ and electrocatalysis, heterogeneous catalysis, CO2 reduction and water splitting. Its unique and tunable optical, chemical, and catalytic properties, alongside its low price and remarkably high stability to oxidation and harsh chemical environments, make it a very attractive material for optoelectronic devices as well as imaging and sensingârelated applications. In this Minireview, we will focus on the optical and photophysical properties of CN films and quantum dots and their potential applications in sensors, LEDs, solar cells and other photoelectronic devices. The synthetic approaches which determine the final chemical and photophysical properties of the CN materials are thoroughly elaborated
Electrophoretic deposition of carbon nitride layers for photoelectrochemical applications
Electrophoretic deposition (EPD) is used for the growth of carbon nitride (C<sub>3</sub>N<sub>4</sub>) layers on conductive substrates. EPD is fast, environmentally friendly, and allows the deposition of negatively charged C<sub>3</sub>N<sub>4</sub> with different compositions and chemical properties. In this method, C<sub>3</sub>N<sub>4</sub> can be deposited on various conductive substrates ranging from conductive glass and carbon paper to nickel foam possessing complex 3D geometries. The high flexibility of this approach enables us to readily tune the photophysical and photoelectronic properties of the C<sub>3</sub>N<sub>4</sub> electrodes. The advantage of this method was further illustrated by the tailored construction of a heterostructure between two complementary C<sub>3</sub>N<sub>4</sub>, with marked photoelectrochemical activity
- âŠ