2,741 research outputs found
A Superlens Based on Metal-Dielectric Composites
Pure noble metals are typically considered to be the materials of choice for
a near-field superlens that allows subwavelength resolution by recovering both
propagating and evanescent waves. However, a superlens based on bulk metal can
operate only at a single frequency for a given dielectric host. In this Letter,
it is shown that a composite metal-dielectric film, with an appropriate metal
filling factor, can operate at practically any desired wavelength in the
visible and near-infrared ranges. Theoretical analysis and simulations verify
the feasibility of the proposed lens.Comment: 15 pages, 4 figure
Translation of Nanoantenna Hot-Spots by a Metal-Dielectric Composite Superlens
We employ numerical simulations to show that highly localized, enhanced
electromagnetic fields, also known as "hot spots," produced by a periodic array
of silver nanoantennas can be spatially translated to the other side of a
metal-dielectric composite superlens. The proposed translation of the hot spots
enables surface-enhanced optical spectroscopy without the undesirable contact
of molecules with metal, and thus it broadens and reinforces the potential
applications of sensing based on field-enhanced fluorescence and
surface-enhanced Raman scattering.Comment: 9 pages, 4 figure
Epsilon-Near-Zero Al-Doped ZnO for Ultrafast Switching at Telecom Wavelengths: Outpacing the Traditional Amplitude-Bandwidth Trade-Off
Transparent conducting oxides have recently gained great attention as
CMOS-compatible materials for applications in nanophotonics due to their low
optical loss, metal-like behavior, versatile/tailorable optical properties, and
established fabrication procedures. In particular, aluminum doped zinc oxide
(AZO) is very attractive because its dielectric permittivity can be engineered
over a broad range in the near infrared and infrared. However, despite all
these beneficial features, the slow (> 100 ps) electron-hole recombination time
typical of these compounds still represents a fundamental limitation impeding
ultrafast optical modulation. Here we report the first epsilon-near-zero AZO
thin films which simultaneously exhibit ultra-fast carrier dynamics (excitation
and recombination time below 1 ps) and an outstanding reflectance modulation up
to 40% for very low pump fluence levels (< 4 mJ/cm2) at the telecom wavelength
of 1.3 {\mu}m. The unique properties of the demonstrated AZO thin films are the
result of a low temperature fabrication procedure promoting oxygen vacancies
and an ultra-high carrier concentration. As a proof-of-concept, an all-optical
AZO-based plasmonic modulator achieving 3 dB modulation in 7.5 {\mu}m and
operating at THz frequencies is numerically demonstrated. Our results overcome
the traditional "modulation depth vs. speed" trade-off by at least an order of
magnitude, placing AZO among the most promising compounds for
tunable/switchable nanophotonics.Comment: 14 pages, 9 figures, 1 tabl
Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications
Optical properties of colloidal plasmonic titanium nitride nanoparticles are
examined with an eye on their photothermal via transmission electron microscopy
and optical transmittance measurements. Single crystal titanium nitride cubic
nanoparticles with an average size of 50 nm exhibit plasmon resonance in the
biological transparency window. With dimensions optimized for efficient
cellular uptake, the nanoparticles demonstrate a high photothermal conversion
efficiency. A self-passivating native oxide at the surface of the nanoparticles
provides an additional degree of freedom for surface functionalization.Comment: 17 pages, 4 figures, 1 abstract figur
Trapped Rainbow Techniques for Spectroscopy on a Chip and Fluorescence Enhancement
We report on the experimental demonstration of the broadband "trapped
rainbow" in the visible range using arrays of adiabatically tapered optical
nano waveguides. Being a distinct case of the slow light phenomenon, the
trapped rainbow effect could be applied to optical signal processing, and
sensing in such applications as spectroscopy on a chip, and to providing
enhanced light-matter interactions. As an example of the latter applications,
we have fabricated a large area array of tapered nano-waveguides, which exhibit
broadband "trapped rainbow" effect. Considerable fluorescence enhancement due
to slow light behavior in the array has been observed.Comment: 15 pages, 4 figures, Published in Applied Physics
- …