1,283 research outputs found

    Effective Field calculations of the Energy Spectrum of the PT\mathcal{PT}% -Symmetric (βˆ’x4-x^{4}) Potential

    Full text link
    In this work, we show that the traditional effective field approach can be applied to the PT\mathcal{PT}-symmetric wrong sign (βˆ’x4-x^{4}) quartic potential. The importance of this work lies in the possibility of its extension to the more important PT\mathcal{PT}-symmetric quantum field theory while the other approaches which use complex contours are not willing to be applicable. We calculated the effective potential of the massless βˆ’x4-x^{4} theory as well as the full spectrum of the theory. Although the calculations are carried out up to first order in the coupling, the predicted spectrum is very close to the exact one taken from other works. The most important result of this work is that the effective potential obtained, which is equivalent to the Gaussian effective potential, is bounded from below while the classical potential is bounded from above. This explains the stability of the vacuum of the theory. The obtained quasi-particle Hamiltonian is non-Hermitian but PT\mathcal{PT}-symmetric and we showed that the calculation of the metric operator can go perturbatively. In fact, the calculation of the metric operator can be done even for higher dimensions (quantum field theory) which, up till now, can not be calculated in the other approaches either perturbatively or in a closed form due to the possible appearance of field radicals. Moreover, we argued that the effective theory is perturbative for the whole range of the coupling constant and the perturbation series is expected to converge rapidly (the effective coupling geff=1/6g_{eff}={1/6}).Comment: 14 pages, 5 figure

    Vacuum Stability of the PT\mathcal{PT}-Symmetric (βˆ’Ο•4)\left( -\phi^{4}\right) Scalar Field Theory

    Full text link
    In this work, we study the vacuum stability of the classical unstable (βˆ’Ο•4)\left( -\phi^{4}\right) scalar field potential. Regarding this, we obtained the effective potential, up to second order in the coupling, for the theory in 1+11+1 and 2+12+1 space-time dimensions. We found that the obtained effective potential is bounded from below, which proves the vacuum stability of the theory in space-time dimensions higher than the previously studied 0+10+1 case. In our calculations, we used the canonical quantization regime in which one deals with operators rather than classical functions used in the path integral formulation. Therefore, the non-Hermiticity of the effective field theory is obvious. Moreover, the method we employ implements the canonical equal-time commutation relations and the Heisenberg picture for the operators. Thus, the metric operator is implemented in the calculations of the transition amplitudes. Accordingly, the method avoids the very complicated calculations needed in other methods for the metric operator. To test the accuracy of our results, we obtained the exponential behavior of the vacuum condensate for small coupling values, which has been obtained in the literature using other methods. We assert that this work is interesting, as all the studies in the literature advocate the stability of the (βˆ’Ο•4)\left( -\phi^{4}\right) theory at the quantum mechanical level while our work extends the argument to the level of field quantization.Comment: 20 pages, 4 figures, appendix added and more details have been added to

    SHARP: A Spatially Higher-order, Relativistic Particle-in-Cell Code

    Get PDF
    Numerical heating in particle-in-cell (PIC) codes currently precludes the accurate simulation of cold, relativistic plasma over long periods, severely limiting their applications in astrophysical environments. We present a spatially higher-order accurate relativistic PIC algorithm in one spatial dimension, which conserves charge and momentum exactly. We utilize the smoothness implied by the usage of higher-order interpolation functions to achieve a spatially higher-order accurate algorithm (up to fifth order). We validate our algorithm against several test problems -- thermal stability of stationary plasma, stability of linear plasma waves, and two-stream instability in the relativistic and non-relativistic regimes. Comparing our simulations to exact solutions of the dispersion relations, we demonstrate that SHARP can quantitatively reproduce important kinetic features of the linear regime. Our simulations have a superior ability to control energy non-conservation and avoid numerical heating in comparison to common second-order schemes. We provide a natural definition for convergence of a general PIC algorithm: the complement of physical modes captured by the simulation, i.e., those that lie above the Poisson noise, must grow commensurately with the resolution. This implies that it is necessary to simultaneously increase the number of particles per cell and decrease the cell size. We demonstrate that traditional ways for testing for convergence fail, leading to plateauing of the energy error. This new PIC code enables us to faithfully study the long-term evolution of plasma problems that require absolute control of the energy and momentum conservation.Comment: 26 pages, 19 figures, discussion about performance is added, published in Ap

    Growth of beam-plasma instabilities in the presence of background inhomogeneity

    Get PDF
    We explore how inhomogeneity in the background plasma number density alters the growth of electrostatic unstable wavemodes of beam plasma systems. This is particularly interesting for blazar-driven beam-plasma instabilities, which may be suppressed by inhomogeneities in the intergalactic medium as was recently claimed in the literature. Using high resolution Particle-In-Cell simulations with the SHARP code, we show that the growth of the instability is local, i.e., regions with almost homogeneous background density will support the growth of the Langmuir waves, even when they are separated by strongly inhomogeneous regions, resulting in an overall slower growth of the instability. We also show that if the background density is continuously varying, the growth rate of the instability is lower; though in all cases, the system remains within the linear regime longer and the instability is not extinguished. In all cases, the beam loses approximately the same fraction of its initial kinetic energy in comparison to the uniform case at non-linear saturation. Thus, inhomogeneities in the intergalactic medium are unlikely to suppress the growth of blazar-driven beam-plasma instabilities.Comment: 10 pages, 6 figures, Accepted by ApJ, comments welcom

    Importance of resolving the spectral support of beam-plasma instabilities in simulations

    Get PDF
    Many astrophysical plasmas are prone to beam-plasma instabilities. For relativistic and dilute beams, the {\it spectral} support of the beam-plasma instabilities is narrow, i.e., the linearly unstable modes that grow with rates comparable to the maximum growth rate occupy a narrow range of wave numbers. This places stringent requirements on the box-sizes when simulating the evolution of the instabilities. We identify the implied lower limits on the box size imposed by the longitudinal beam plasma instability, i.e., typically the most stringent condition required to correctly capture the linear evolution of the instabilities in multidimensional simulations. We find that sizes many orders of magnitude larger than the resonant wavelength are typically required. Using one-dimensional particle-in-cell simulations, we show that the failure to sufficiently resolve the spectral support of the longitudinal instability yields slower growth and lower levels of saturation, potentially leading to erroneous physical conclusion.Comment: 7 pages, 9 figures, accepted by Ap

    Representation Dependence of Superficial Degree of Divergences in Quantum Field Theory

    Full text link
    In this work, we investigate a very important but unstressed result in the work of Carl M. Bender, Jun-Hua Chen, and Kimball A. Milton ( J.Phys.A39:1657-1668, 2006). In this article, Bender \textit{et.al} have calculated the vacuum energy of the iΟ•3i\phi^{3} scalar field theory and its Hermitian equivalent theory up to g4g^{4} order of calculations. While all the Feynman diagrams of the iΟ•3i\phi^{3} theory are finite in 0+10+1 space-time dimensions, some of the corresponding Feynman diagrams in the equivalent Hermitian theory are divergent. In this work, we show that the divergences in the Hermitian theory originate from superrenormalizable, renormalizable and non-renormalizable terms in the interaction Hamiltonian even though the calculations are carried out in the 0+10+1 space-time dimensions. Relying on this interesting result, we raise the question, is the superficial degree of divergence of a theory is representation dependent? To answer this question, we introduce and study a class of non-Hermitian quantum field theories characterized by a field derivative interaction Hamiltonian. We showed that the class is physically acceptable by finding the corresponding class of metric operators in a closed form. We realized that the obtained equivalent Hermitian and the introduced non-Hermitian representations have coupling constants of different mass dimensions which may be considered as a clue for the possibility of considering non-Renormalizability of a field theory as a non-genuine problem. Besides, the metric operator is supposed to disappear from path integral calculations which means that physical amplitudes can be fully obtained in the simpler non-Hermitian representation.Comment: 14 pages one figure. The title has been change

    A Novel phase in the phase structure of the (gΟ•4+hΟ•6)1+1(g\phi^4 + h\phi^6)_{1+1} field theoretic model

    Full text link
    In view of the newly discovered and physically acceptable PTPT symmetric and non-Hermitian models, we reinvestigated the phase structure of the (gΟ•4+hΟ•6g\phi^{4}+h\phi^{6})1+1_{1+1} Hermitian model. The reinvestigation concerns the possibility of a phase transition from the original Hermitian and PTPT symmetric phase to a non-Hermitian and PTPT symmetric one. This kind of phase transition, if verified experimentally, will lead to the first proof that non-Hermitian and PTPT symmetric models are not just a mathematical research framework but are a nature desire. To do the investigation, we calculated the effective potential up to second order in the couplings and found a Hermitian to Non-Hermitian phase transition. This leads us to introduce, for the first time, hermiticity as a symmetry which can be broken due to quantum corrections, \textit{i.e.}, when starting with a model which is Hermitian in the classical level, quantum corrections can break hermiticity while the theory stays physically acceptable. In fact, ignoring this phase will lead to violation of universality when comparing this model predictions with other models in the same class of universality. For instance, in a previous work we obtained a second order phase transition for the PTPT symmetric and non-Hermitian (βˆ’gΟ•4)(-g\phi^{4}) and according to universality, this phase should exist in the phase structure of the (gΟ•4+hΟ•6g\phi^{4}+h\phi^{6}) model for negative gg. Finally, among the novelties in this letter, in our calculation for the effective potential, we introduced a new renormalization group equation which describes the invariance of the bare vacuum energy under the change of the scale. We showed that without this invariance, the original theory and the effective one are inequivalent.Comment: 13 pages, 4 figure
    • …
    corecore