8 research outputs found

    Preface

    Get PDF

    Spectral and magnetic properties of impurity Tm3+ ions in YF3

    No full text
    Stark structure of 3H6, 3H5, 3H4, 3F4, 3F3, 3F2 and 1G4 multiplets of impurity non-Kramers Tm3+ ions in the orthorhombic YF3 crystal has been determined from luminescence studies. High frequency electron paramagnetic resonance (EPR) spectra (~ 207 GHz) of Tm3+ ions have been measured at temperature 4.2 K in external magnetic field applied perpendicular to the b-axis of YF3:Tm3+ single crystal. The results of measurements are interpreted in the frameworks of the crystal field theory. The set of crystal field parameters related to the crystallographic system of coordinates of the YF3 lattice has been obtained and used to reproduce satisfactory the crystal field energies and the EPR spectra

    A novel comprehensive approach for human vascular allografts cryopreservation and radiation sterilization for the tissue engineering industry

    No full text
    Aim: to verify new techniques for human cadaveric vascular allografts cryopreservation, thawing and sterilization for the tissue engineering purposes. We use polydimethylsiloxane (PDMS) as a well-known, promising coolant. This allowed us to completely omit any cryoprotective or vitrifying solutions. Using of PDMS also makes possible an applying these allografts directly after freezing and decellularization and also it will also provide an opportunity to develop secure protocols of tissue— engineered vascular conduits cryopreservation. Matherial and methods. After mathematical modeling of cooling process and its validation the experiment for sealed (isolated) freezing at low temperature conditions of 30 femoral arterial segments has been conducted. The segments were at least 10 cm in length and taken from 15 cadaveric donors in the age of 65-85 years. The freezing process was carried out using the abovementioned coolant— PDMS, and then physico-mechanical properties of these allografts were evaluated with the special Instron machine. According to the results obtained, a modeling of their sterilization conditions was conducted (the grafts were freezed). Results. By physico-mechanical properties validation and restricted histological analysis it was shown that there was an accordance between freezed/thawed allografts properties and native vessels. Conclusion. The abovementioned approach for allografts cryopreservation and thawing was efficient enough for further work in this direction
    corecore