36 research outputs found

    Role of Nicotinic Acetylcholine Receptors in Experimental Colitis

    Get PDF
    Substantial evidence in the literature shows that tobacco smoking has complex and divergent effects on inflammatory bowel diseases (IBD). It ameliorates ulcerative colitis (UC); whereas it aggravates the risk of Crohn’s disease (CD) and affects the disease course and severity. Studies have shown that nicotine has a positive influence on symptoms of UC. Also, it is demonstrated that nicotinic acetylcholine receptor, especially α7 subunit plays an essential component in the vagus nerve-based cholinergic anti-inflammatory effects. In the present study, we explored the effect of nicotine and α7 nicotinic agonists treatment in the DSS colitis mouse model. We also investigated the effects of cotinine, a major metabolite of nicotine, in the model. Methods: Different groups of C57BL6 mice, as well as α7, α5, and β2 nicotinic receptor knock out mice, and their littermates wild-type nicotinic receptor male adult mice were given DSS solution freely in the drinking water for 7 consecutive days after which tap water was given on the 8th day. We measured a Disease Activity Index (DAI) that includes body weight loss, blood presence in stools, stool consistency, local rectal irritation and length of the colon. The mice were then sacrificed on day 8 to allow examination of the entire colon. Disease severity and colon tissue histology and inflammatory markers including colonic myeloperoxidase (MPO) and colonic tumor necrosis factor-α (TNF-α) were evaluated. Levels of MPO and TNF-α were determined by enzyme-linked immunosorbent assay analysis of the homogenized colon samples. The effect of oral, subcutaneous, mini pump nicotine, and oral cotinine treatments were examined on experimental colitis induced by 2.5% DSS in mice. In addition, we measured the plasma levels of the nicotine and cotinine in our treatment protocols. Results: The DSS 2.5% model of colitis is easily induced in mice. Administration of low doses of oral nicotine (12.5 and 25 μg/ml), but not high doses in DSS-treated mice displayed a significant decrease in disease activity index value, total histological damage scores, as well as colonic level of TNF-α compared to the control group. However, the anti-inflammatory effect of nicotine was not seen with chronic s.c., mini pump nicotine or oral cotinine administration. Differences in plasma levels of nicotine and cotinine do not seem to account for this lack of effect. Moreover, neither nicotine nor cotinine reversed colon length shortening in DSS-treated mice, except with the 0.5 mg/kg s.c. dose of nicotine. There was no change in MPO activity among the groups treated with oral or s.c. nicotine. Cotinine oral administration on its own failed to show a significant effect in the DSS model of colitis. α7 KO mice displayed a significantly increased in DAI value starting from day 4 till day 8, histological damage scores and TNF-α levels of were increased significantly compared to their littermate WT mice. Moreover, pretreatments with PHA-543613 (8 mg/kg), a selective α7 agonist, and choline chloride (40 ug/ml), an α7 nAChR natural agonist, significantly reduced clinical parameters in DSS-treated mice; however, they slightly inhibited the increase in the colonic TNF-α levels compare with vehicle DSS-treated mice. Moreover, PNU-120596 (3 mg/kg), a positive allosteric modulator for α7 nAChRs, significantly reduced DAI value and total histological damage score in DSS-treated mice. Conclusion: Results obtained from this study highlight that dose and route of administration play a critical role in the protective effect of nicotine in the DSS mouse colitis model. Also, these data suggest that α7 nAChR has a protective role in colitis with narrower therapeutic index. Data obtained from this study further understanding of the effect of nicotine in UC and may contribute in the development of new pharmaceutical designs for targeting nAChRs for the treatment of ulcerative colitis

    Rutin Attenuates Hepatotoxicity in High-Cholesterol-Diet-Fed Rats

    Get PDF
    Background and Objective. High-cholesterol diet (HCD) intends to increase the oxidative stress in liver tissues inducing hepatotoxicity. Rutin is a natural flavonoid (vitamin p) which is known to have antioxidative properties. The aim of the present study was to investigate the potential effects of Rutin on hypercholesterolemia-induced hepatotoxicity in rats. Materials and Methods. Male Wistar rats were divided into four groups: G-I control, G-II Rutin, G-III HCD, and G-IV Rutin + HCD. The liver functions and lipid profile were used to evaluate the HCD-induced hepatotoxicity. Quantitative real time-PCR was carried out to evaluate the expression levels of genes in TGF-β/Smad signaling pathway. Results. Rutin in combination with HCD showed a significant protective effect against hepatotoxicity. HCD caused significant increase in the mRNA expression of transforming growth factor beta (TGF-β), Mothers Against Decapentaplegic Homolog 2 (Smad-2), Mothers Against Decapentaplegic Homolog 4 (Smad-4), Bcl-2-binding component 3 (Bbc3), caspase-3, P53 and Interleukin-6 (IL-6) and decrease in the expression levels of Cyclin depended kinase inhibitor (P21) and Interleukin-3 (IL-3) in hepatic cells. Conclusion. TGF-β/Smad signaling pathway is involved in HCD-induced hepatotoxicity and Rutin inhibits the hepatotoxicity via suppressing this pathway. Therefore, Rutin might be considered as a protective agent for hepatotoxicity

    The role of alpha5 nicotinic acetylcholine receptors in mouse models of chronic inflammatory and neuropathic pain

    Get PDF
    The aim of the present study was to determine the impact of as nicotinic acetylcholine receptor (nAChR) subunit deletion in the mouse on the development and intensity of nociceptive behavior in various chronic pain models. The role of as-containing nAChRs was explored in mouse models of chronic pain, including peripheral neuropathy (chronic constriction nerve injury, CCI), tonic inflammatory pain (the formalin test) and short and long-term inflammatory pain (complete Freund's adjuvant, CFA and carrageenan tests) in alpha(5) knock-out (1(0) and wild-type (WT) mice. The results showed that paw-licking time was decreased in the formalin test, and the hyperalgesic and allodynic responses to carrageenan and CFA injections were also reduced. In addition, paw edema in formalin-, carrageenan- or CFA-treated mice were attenuated in alpha(5)-K-O mice significantly. Furthermore, tumor necrosis factor-alpha (TNF-alpha) levels of carrageenan-treated paws were lower in alpha(5)-K-O mice. The antinociceptive effects of nicotine and sazetidine-A but not varenicline were alpha(5)-dependent in the formalin test. Both hyperalgesia and allodynia observed in the CCI test were reduced in alpha(5)-K-O mice. Nicotine reversal of mechanical allodynia in the CCI test was mediated through alpha(5)-nAChRs at spinal and peripheral sites. In summary, our results highlight the involvement of the et, nAChR subunit in the development of hyperalgesia, allodynia and inflammation associated with chronic neuropathic and inflammatory pain models. They also suggest the importance of alpha(5)-nAChRs as a target for the treatment of chronic pain.United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute on Drug Abuse (NIDA) (DA-12610)United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute on Drug Abuse (NIDA) European Commission (R01DA032246)United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute on Drug Abuse (NIDA) European Commission (R01DA012610

    The analgesic-like properties of the alpha7 nAChR silent agonist NS6740 is associated with non-conducting conformations of the receptor

    Get PDF
    The alpha 7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of neurological disorders including chronic pain and inflammatory diseases. Since alpha 7 can function as a ligand-gated ion channel, drug development initially focused on ligands that were selective activators of the alpha 7 ion channel. However, the best alpha 7 drugs for chronic pain and inflammation indications may not be ion channel activators but rather "silent agonists", which bind to the receptor but preferentially induce non-conducting states that modulate signal transduction in non-neuronal cells. One such compound is NS6740. We show that NS6740 selectively induces prolonged desensitization of alpha 7 nAChRs. There are two forms of alpha 7 desensitization that can be distinguished by their sensitivity to the positive allosteric modulators (PAMs). At high concentrations, NS6740 preferentially induces PAM-insensitive desensitization, which over the course of several minutes reverts to the sensitive form. NS6740 was tested in several pain models after in vivo administration in the mouse. Although it had no effects in acute thermal pain, NS6740 induced significant dose- and time-dependent antinociceptive activity in formalin- and acetic acid-induced nociceptive behaviors as well as in the chronic constrictive nerve injury (CCI) model for neuropathic pain. The antinociceptive activity of NS6740 in these models was alpha 7-dependent. In addition, NS6740 administration reversed pain-induced aversion, an important affective component of pain. The time and concentration dependence of the effects were consistent with NS6740 induction of PAM-insensitive non-conducting states, suggesting that signal transduction required for analgesia is accomplished by alpha 7 receptors in that conformation.VCU Massey Cancer Center (A-35337)United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute on Drug Abuse (NIDA) European Commission (DA032246)United States Department of Health & Human Services National Institutes of Health (NIH) - USA (GM57481)United States Department of Health & Human Services National Institutes of Health (NIH) - USA (DA027113)United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute of General Medical Sciences (NIGMS) (R01GM057481)United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute on Drug Abuse (NIDA) European Commission (R01DA032246)United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute on Drug Abuse (NIDA) European Commission (R01DA012610)United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute on Drug Abuse (NIDA) European Commission (R03DA027113

    Sex differences and drug dose influence the role of the alpha 7 nicotinic acetylcholine receptor in the mouse dextran sodium sulfate-induced colitis model

    Get PDF
    Introduction: alpha 7 nicotinic acetylcholine receptors (nAChRs) play an important role in vagus nerve-based cholinergic anti-inflammatory effects. This study was designed to assess the role of alpha 7 nAChRs in dextran sodium sulfate (DSS)-induced colitis in male and female mouse. We first compared disease activity and pathogenesis of colitis in alpha 7 knockout and wild-type mice. We then evaluated the effect of several alpha 7 direct and indirect agonists on the severity of disease in the DSS-induced colitis. Methods: Male and female adult mice were administered 2.5% DSS solution freely in the drinking water for 7 consecutive days and the colitis severity (disease activity index) was evaluated as well as colon length, colon histology, and levels of tumor necrosis factor-alpha colonic levels. Results: Male, but not female, alpha 7 knockout mice displayed a significantly increased colitis severity and higher tumor necrosis factor-alpha levels as compared with their littermate wild-type mice. Moreover, pretreatment with selective alpha 7 ligands PHA-543613, choline, and PNU-120596 decreased colitis severity in male but not female mice. The anti-colitis effects of these alpha 7 compounds dissipated when administered at higher doses. Conclusions: Our results suggest the presence of a alpha 7-dependent anti-colitis endogenous tone in male mice. Finally, our results show for the first time that female mice are less sensitive to the anticolitis activity of alpha 7 agonists. Ovarian hormones may play a key role in the sex difference effect of alpha 7 nAChRs modulation of colitis in the mouse. Implications: Our collective results suggest that targeting alpha 7 nAChRs could represent a viable therapeutic approach for intestinal inflammation diseases such as ulcerative colitis with the consideration of sex differences.United States Department of Health & Human Services National Institutes of Health (NIH) - USA - DA-019377 - DK046367United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute on Drug Abuse (NIDA) European Commission - R01DA03697

    The α7 nicotinic receptor dual allosteric agonist and positive allosteric modulator GAT107 reverses nociception in mouse models of inflammatory and neuropathic pain

    Get PDF
    Background and PurposeOrthosteric agonists and positive allosteric modulators (PAMs) of the 7 nicotinic ACh receptor (nAChR) represent novel therapeutic approaches for pain modulation. Moreover, compounds with dual function as allosteric agonists and PAMs, known as ago-PAMs, add further regulation of receptor function. Experimental ApproachInitial studies examined the 7 ago-PAM, GAT107, in the formalin, complete Freund's adjuvant (CFA), LPS inflammatory pain models, the chronic constriction injury neuropathic pain model and the tail flick and hot plate acute thermal nociceptive assays. Additional studies examined the locus of action of GAT107 and immunohistochemical markers in the dorsal horn of the spinal cord in the CFA model. Key ResultsComplementary pharmacological and genetic approaches confirmed that the dose-dependent antinociceptive effects of GAT107 were mediated through 7 nAChR. However, GAT107 was inactive in the tail flick and hot plate assays. In addition, GAT107 blocked conditioned place aversion elicited by acetic acid injection. Furthermore, intrathecal, but not intraplantar, injections of GAT107 reversed nociception in the CFA model, suggesting a spinal component of action. Immunohistochemical evaluation revealed an increase in the expression of astrocyte-specific glial fibrillary acidic protein and phosphorylated p38MAPK within the spinal cords of mice treated with CFA, which was attenuated by intrathecal GAT107 treatment. Importantly, GAT107 did not elicit motor impairment and continued to produce antinociceptive effects after subchronic administration in both phases of the formalin test. Conclusions and ImplicationsCollectively, these results provide the first proof of principle that 7 ago-PAMs represent an effective pharmacological strategy for treating inflammatory and neuropathic pain.Pilot Project from VCU Massey Cancer CenterUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA - DA032246NIH National Institute on Drug Abuse (NIDA)European CommissionUnited States Department of Health & Human Services National Institutes of Health (NIH) - USA - GM57481 - EY024717 - DA038493-01A1R01DA032246P30DA033934F32DA03849

    The interaction between alpha 7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-alpha represents a new antinociceptive signaling pathway in mice

    Get PDF
    Recently, alpha 7 nicotinic acetylcholine receptors (nAChRs), primarily activated by binding of orthosteric agonists, represent a target for anti-inflammatory and analgesic drug development. These receptors may also be modulated by positive allosteric modulators (PAMs), ago-allosteric ligands (ago-PAMs), and alpha 7-silent agonists. Activation of 00 nAChRs has been reported to increase the brain levels of endogenous ligands for nuclear peroxisome proliferator-activated receptors type-alpha (PPAR-alpha), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), in a Ca2+-dependent manner. Here, we investigated potential crosstalk between alpha 7 nAChR and PPAR-alpha, using the formalin test, a mouse model of tonic pain. Using pharmacological and genetic approaches, we found that PNU282987, a full alpha 7 agonist, attenuated formalin-induced nociceptive behavior in alpha 7 -dependent manner. Interestingly, the selective PPAR-alpha antagonist GW6471 blocked the antinociceptive effects of PNU282987, but did not alter the antinociceptive responses evoked by the alpha 7 nAChR PAM PNU120596, ago-PAM GAT107, and silent agonist NS6740. Moreover, GW6471 administered systemically or spinally, but not via the intraplantar surface of the formalin-injected paw blocked PNU282987-induced antinociception. Conversely, exogenous administration of the naturally occurring PPAR-alpha agonist PEA potentiated the antinociceptive effects of PNU282987. In contrast, the cannabinoid 031 antagonist rimonabant and the CB2 antagonist SR144528 failed to reverse the antinociceptive effects of PNU282987. These findings suggest that PPAR-alpha plays a key role in a putative antinociceptive alpha 7 nicotinic signaling pathway.United States Department of Health & Human Services National Institutes of Health (NIH) - USA - GM57481 - R01 CA206028United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Cancer Institute (NCI) - R01CA206028United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute of General Medical Sciences (NIGMS) - R01GM057481United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute on Drug Abuse (NIDA) European Commission - T32DA00702

    Expression and pharmacological modulation of visceral pain-induced conditioned place aversion in mice

    No full text
    Bu çalışma, 02-06, Nisan 2016 tarihlerinde San Diego[Amerika Birleşik Devletleri]’da düzenlenen Experimental Biology Meeting Kongresi‘nde bildiri olarak sunulmuştur.Amer Assoc AnatomistsAmer Physiol SocAmer Soc Biochem & Mol BiolAmer Soc Investigat PatholAmer Soc NutrAmer Soc Pharmacol & Expt Therapeu

    The potential effect of α7 nicotinic receptors modulation on palatable food-induced dependence-like behaviors

    No full text
    Background: The recent global increase in obesity rates, coupled with excessive palatable food (PF) consumption, has become a serious societal concern. Literature indicates that rewarding PF, especially upon cessation, can lead to overeating, binge eating, and compulsive eating, potentially resulting in obesity. Challenges in dietary paradigms, alongside limitations in approved treatments for eating disorders and anti-obesity medications, underscore the need to explore novel targets. In this context, α7nAChR (alpha-7 nicotinic acetylcholine receptor) may serve as a promising therapeutic target in combating food dependence and obesity. The present study aims to assess the role of α7nAChR in palatable food-induced dependence-like behaviors. Method: The study involved male C57BL/6J mice exposed to three different feeding paradigms over 6 weeks to induce obesity and food addiction. On day 43, palatable food was replaced with standard chow, and the mice received treatments (vehicle, PNU-282987 [α7nAChR agonist], or methyllycaconitine citrate [MLA; α7nAChR antagonist]). Addiction-like behaviors, including craving for palatable food, motivation-effort interaction tests, and compulsive eating-like behavior, were measured during abstinence with and without treatment. Results: The present study shows that chronic intermittent and continuous exposure to palatable food induces craving, motivation, and effort interaction behaviors as well as compulsive eating-like behaviors in palatable food-abstinent mice. Administration of the α7nAChR agonist, PNU-282987, significantly attenuated the craving behavior only in mice continuously fed palatable food (reduced calorie intake from 63.19 % to 48.21 %; p = 0.0053). Also, PNU-282987 suppressed the effort behaviors in either intermittently or continuously fed mice (significant reduction in the Δ number of active events per minute; p-values = 0.038 and 0.0098, respectively). However, it attenuated the compulsive-like eating behavior exclusively in the continuously fed group (p = 0.0433). Active and total interaction efforts were reversed by the MLA. These findings indicate the involvement of α7nAChR in dependence-like behaviors toward palatable food in mice. Conclusion: Our findings demonstrate that dependence-like behaviors toward palatable food can emerge after prolonged exposure. Mice fed on palatable food continuously exhibited more dependence-like behaviors toward palatable food, and activation of α7nAChR signaling attenuated the vulnerability to develop such behaviors
    corecore