24 research outputs found

    A direct numerical simulation method for complex modulus of particle dispersions

    Full text link
    We report an extension of the smoothed profile method (SPM)[Y. Nakayama, K. Kim, and R. Yamamoto, Eur. Phys. J. E {\bf 26}, 361(2008)], a direct numerical simulation method for calculating the complex modulus of the dispersion of particles, in which we introduce a temporally oscillatory external force into the system. The validity of the method was examined by evaluating the storage G′(ω)G'(\omega) and loss G"(ω)G"(\omega) moduli of a system composed of identical spherical particles dispersed in an incompressible Newtonian host fluid at volume fractions of Φ=0\Phi=0, 0.41, and 0.51. The moduli were evaluated at several frequencies of shear flow; the shear flow used here has a zigzag profile, as is consistent with the usual periodic boundary conditions

    Fouling dynamics in suspension flows

    Full text link
    A particle suspension flowing in a channel in which fouling layers are allowed to form on the channel walls is investigated by numerical simulation. A two-dimensional phase diagram with at least four different behaviors is constructed. The fouling is modeled by attachment during collision with the deposits and by detachment caused by large enough hydrodynamic drag. For fixed total number of particles and small Reynolds numbers, the relevant parameters governing the fouling dynamics are the solid volume fraction of the suspension and the detachment drag force threshold. Below a critical curve in this 2D phase space only transient fouling takes place when the suspension is accelerated from rest by a pressure gradient. Above the fouling transition line, persistent fouling layers are formed via ballistic deposition for low and via homogeneous deposition for large solid volume fractions. Close to the fouling transition line, the flow path between the deposited layers meanders, while necking appears for increasing distance from the transition. Finally, another transition to a fully blocked flow path takes place. As determined by the estimated amount of deposited particles at saturation, both transitions seem to be discontinuous. Large fluctuations and long saturation times are typical of the dynamics of the system

    Fouling dynamics in suspension flows

    Full text link
    A particle suspension flowing in a channel in which fouling layers are allowed to form on the channel walls is investigated by numerical simulation. A two-dimensional phase diagram with at least four different behaviors is constructed. The fouling is modeled by attachment during collision with the deposits and by detachment caused by large enough hydrodynamic drag. For fixed total number of particles and small Reynolds numbers, the relevant parameters governing the fouling dynamics are the solid volume fraction of the suspension and the detachment drag force threshold. Below a critical curve in this 2D phase space only transient fouling takes place when the suspension is accelerated from rest by a pressure gradient. Above the fouling transition line, persistent fouling layers are formed via ballistic deposition for low and via homogeneous deposition for large solid volume fractions. Close to the fouling transition line, the flow path between the deposited layers meanders, while necking appears for increasing distance from the transition. Finally, another transition to a fully blocked flow path takes place. As determined by the estimated amount of deposited particles at saturation, both transitions seem to be discontinuous. Large fluctuations and long saturation times are typical of the dynamics of the system
    corecore