218 research outputs found

    Colorization as a Proxy Task for Visual Understanding

    Full text link
    We investigate and improve self-supervision as a drop-in replacement for ImageNet pretraining, focusing on automatic colorization as the proxy task. Self-supervised training has been shown to be more promising for utilizing unlabeled data than other, traditional unsupervised learning methods. We build on this success and evaluate the ability of our self-supervised network in several contexts. On VOC segmentation and classification tasks, we present results that are state-of-the-art among methods not using ImageNet labels for pretraining representations. Moreover, we present the first in-depth analysis of self-supervision via colorization, concluding that formulation of the loss, training details and network architecture play important roles in its effectiveness. This investigation is further expanded by revisiting the ImageNet pretraining paradigm, asking questions such as: How much training data is needed? How many labels are needed? How much do features change when fine-tuned? We relate these questions back to self-supervision by showing that colorization provides a similarly powerful supervisory signal as various flavors of ImageNet pretraining.Comment: CVPR 2017 (Project page: http://people.cs.uchicago.edu/~larsson/color-proxy/

    Regularizing Deep Networks by Modeling and Predicting Label Structure

    Full text link
    We construct custom regularization functions for use in supervised training of deep neural networks. Our technique is applicable when the ground-truth labels themselves exhibit internal structure; we derive a regularizer by learning an autoencoder over the set of annotations. Training thereby becomes a two-phase procedure. The first phase models labels with an autoencoder. The second phase trains the actual network of interest by attaching an auxiliary branch that must predict output via a hidden layer of the autoencoder. After training, we discard this auxiliary branch. We experiment in the context of semantic segmentation, demonstrating this regularization strategy leads to consistent accuracy boosts over baselines, both when training from scratch, or in combination with ImageNet pretraining. Gains are also consistent over different choices of convolutional network architecture. As our regularizer is discarded after training, our method has zero cost at test time; the performance improvements are essentially free. We are simply able to learn better network weights by building an abstract model of the label space, and then training the network to understand this abstraction alongside the original task.Comment: to appear at CVPR 201
    • …
    corecore