327 research outputs found

    The Markov-Zariski topology of an abelian group

    Get PDF
    According to Markov, a subset of an abelian group G of the form {x in G: nx=a}, for some integer n and some element a of G, is an elementary algebraic set; finite unions of elementary algebraic sets are called algebraic sets. We prove that a subset of an abelian group G is algebraic if and only if it is closed in every precompact (=totally bounded) Hausdorff group topology on G. The family of all algebraic subsets of an abelian group G forms the family of closed subsets of a unique Noetherian T_1 topology on G called the Zariski, or verbal, topology of G. We investigate the properties of this topology. In particular, we show that the Zariski topology is always hereditarily separable and Frechet-Urysohn. For a countable family F of subsets of an abelian group G of cardinality at most the continuum, we construct a precompact metric group topology T on G such that the T-closure of each member of F coincides with its Zariski closure. As an application, we provide a characterization of the subsets of G that are dense in some Hausdorff group topology on G, and we show that such a topology, if it exists, can always be chosen so that it is precompact and metric. This provides a partial answer to a long-standing problem of Markov

    Metrization criteria for compact groups in terms of their dense subgroups

    Full text link
    According to Comfort, Raczkowski and Trigos-Arrieta, a dense subgroup D of a compact abelian group G determines G if the restriction homomorphism G^ --> D^ of the dual groups is a topological isomorphism. We introduce four conditions on D that are necessary for it to determine G and we resolve the following question: If one of these conditions holds for every dense (or G_\delta-dense) subgroup D of G, must G be metrizable? In particular, we prove (in ZFC) that a compact abelian group determined by all its G_\delta-dense subgroups is metrizable, thereby resolving a question by Hernandez, Macario and Trigos-Arrieta. (Under the additional assumption of the Continuum Hypothesis CH, the same statement was proved recently by Bruguera, Chasco, Dominguez, Tkachenko and Trigos-Arrieta.) As a tool, we develop a machinery for building G_\delta-dense subgroups without uncountable compact subsets in compact groups of weight \omega_1 (in ZFC). The construction is delicate, as these subgroups must have non-trivial convergent sequences in some models of ZFC.Comment: The exposition has substantially improved. Remarks 5.6 and 5.7 are new. Three references adde

    Reflection principle characterizing groups in which unconditionally closed sets are algebraic

    Full text link
    We give a necessary and sufficient condition, in terms of a certain reflection principle, for every unconditionally closed subset of a group G to be algebraic. As a corollary, we prove that this is always the case when G is a direct product of an Abelian group with a direct product (sometimes also called a direct sum) of a family of countable groups. This is the widest class of groups known to date where the answer to the 63 years old problem of Markov turns out to be positive. We also prove that whether every unconditionally closed subset of G is algebraic or not is completely determined by countable subgroups of G.Comment: 14 page

    Hewitt-Marczewski-Pondiczery type theorem for abelian groups and Markov's potential density

    Full text link
    For an uncountable cardinal \tau and a subset S of an abelian group G, the following conditions are equivalent: (i) |{ns:s\in S}|\ge \tau for all integers n\ge 1; (ii) there exists a group homomorphism \pi:G\to T^{2^\tau} such that \pi(S) is dense in T^{2^\tau}. Moreover, if |G|\le 2^{2^\tau}, then the following item can be added to this list: (iii) there exists an isomorphism \pi:G\to G' between G and a subgroup G' of T^{2^\tau} such that \pi(S) is dense in T^{2^\tau}. We prove that the following conditions are equivalent for an uncountable subset S of an abelian group G that is either (almost) torsion-free or divisible: (a) S is T-dense in G for some Hausdorff group topology T on G; (b) S is T-dense in some precompact Hausdorff group topology T on G; (c) |{ns:s\in S}|\ge \min{\tau:|G|\le 2^{2^\tau}} for every integer n\ge 1. This partially resolves a question of Markov going back to 1946

    A complete solution of Markov's problem on connected group topologies

    Get PDF
    Every proper closed subgroup of a connected Hausdorff group must have index at least c, the cardinality of the continuum. 70 years ago Markov conjectured that a group G can be equipped with a connected Hausdorff group topology provided that every subgroup of G which is closed in all Hausdorff group topologies on G has index at least c. Counter-examples in the non-abelian case were provided 25 years ago by Pestov and Remus, yet the problem whether Markov's Conjecture holds for abelian groups G remained open. We resolve this problem in the positive
    • …
    corecore