39 research outputs found

    From d-wave to s-wave pairing in the iron-pnictide superconductor (Ba,K)Fe2As2

    Full text link
    The nature of the pairing state in iron-based superconductors is the subject of much debate. Here we argue that in one material, the stoichiometric iron pnictide KFe2As2, there is overwhelming evidence for a d-wave pairing state, characterized by symmetry-imposed vertical line nodes in the superconducting gap. This evidence is reviewed, with a focus on thermal conductivity and the strong impact of impurity scattering on the critical temperature Tc. We then compare KFe2As2 to Ba0.6K0.4Fe2As2, obtained by Ba substitution, where the pairing symmetry is s-wave and the Tc is ten times higher. The transition from d-wave to s-wave within the same crystal structure provides a rare opportunity to investigate the connection between band structure and pairing mechanism. We also compare KFe2As2 to the nodal iron-based superconductor LaFePO, for which the pairing symmetry is probably not d-wave, but more likely s-wave with accidental line nodes

    Doping dependence of heat transport in the iron-arsenide superconductor Ba(Fe1−x_{1-x}Cox_x)2_2As2_2: from isotropic to strongly kk-dependent gap structure

    Get PDF
    The temperature and magnetic field dependence of the in-plane thermal conductivity κ\kappa of the iron-arsenide superconductor Ba(Fe1−x_{1-x}Cox_x)2_2As2_2 was measured down to T≃50T \simeq 50 mK and up to H=15H = 15 T as a function of Co concentration xx in the range 0.048 ≤x≤ \leq x \leq 0.114. In zero magnetic field, a negligible residual linear term in κ/T\kappa/T as T→0T \to 0 at all xx shows that there are no zero-energy quasiparticles and hence the superconducting gap has no nodes in the abab-plane anywhere in the phase diagram. However, the field dependence of κ\kappa reveals a systematic evolution of the superconducting gap with doping xx, from large everywhere on the Fermi surface in the underdoped regime, as evidenced by a flat κ(H)\kappa (H) at T→0T \to 0, to strongly kk-dependent in the overdoped regime, where a small magnetic field can induce a large residual linear term, indicative of a deep minimum in the gap magnitude somewhere on the Fermi surface. This shows that the superconducting gap structure has a strongly kk-dependent amplitude around the Fermi surface only outside the antiferromagnetic/orthorhombic phase.Comment: version accepted for publication in Physical Review Letters; new title, minor revision, revised fig.1, and updated reference

    Nodes in the gap structure of the iron-arsenide superconductor Ba(Fe_{1-x}Co_x)_2As_2 from c-axis heat transport measurements

    Full text link
    The thermal conductivity k of the iron-arsenide superconductor Ba(Fe_{1-x}Co_x)_2As_2 was measured down to 50 mK for a heat current parallel (k_c) and perpendicular (k_a) to the tetragonal c axis, for seven Co concentrations from underdoped to overdoped regions of the phase diagram (0.038 < x < 0.127). A residual linear term k_c0/T is observed in the T = 0 limit when the current is along the c axis, revealing the presence of nodes in the gap. Because the nodes appear as x moves away from the concentration of maximal T_c, they must be accidental, not imposed by symmetry, and are therefore compatible with an s_{+/-} state, for example. The fact that the in-plane residual linear term k_a0/T is negligible at all x implies that the nodes are located in regions of the Fermi surface that contribute strongly to c-axis conduction and very little to in-plane conduction. Application of a moderate magnetic field (e.g. H_c2/4) excites quasiparticles that conduct heat along the a axis just as well as the nodal quasiparticles conduct along the c axis. This shows that the gap must be very small (but non-zero) in regions of the Fermi surface which contribute significantly to in-plane conduction. These findings can be understood in terms of a strong k dependence of the gap Delta(k) which produces nodes on a Fermi surface sheet with pronounced c-axis dispersion and deep minima on the remaining, quasi-two-dimensional sheets.Comment: 12 pages, 13 figures

    Quasiparticle Heat Transport in Ba1−x_{1-x}Kx_xFe2_2As2_2: Evidence for a k-dependent Superconducting Gap without Nodes

    Full text link
    The thermal conductivity κ\kappa of the iron-arsenide superconductor Ba1−x_{1-x}Kx_xFe2_2As2_2 (Tc≃T_c \simeq 30 K) was measured in single crystals at temperatures down to T≃50T \simeq 50 mK (≃Tc\simeq T_c/600) and in magnetic fields up to H=15H = 15 T (≃Hc2\simeq H_{c2}/4). A negligible residual linear term in κ/T\kappa/T as T→0T \to 0 shows that there are no zero-energy quasiparticles in the superconducting state. This rules out the existence of line and in-plane point nodes in the superconducting gap, imposing strong constraints on the symmetry of the order parameter. It excludes d-wave symmetry, drawing a clear distinction between these superconductors and the high-TcT_c cuprates. However, the fact that a magnetic field much smaller than Hc2H_{c2} can induce a residual linear term indicates that the gap must be very small on part of the Fermi surface, whether from strong anisotropy or band dependence, or both

    Nodes in the gap structure of the iron arsenide superconductor Ba(Fe(1-x)Cox)(2)As-2 from c-axis heat transport measurements

    Get PDF
    The thermal conductivity κ of the iron-arsenide superconductor Ba(Fe1−xCox)2As2 was measured down to 50 mK for a heat current parallel (κc) and perpendicular (κa) to the tetragonal c axis for seven Co concentrations from underdoped to overdoped regions of the phase diagram (0.038≤x≤0.127). A residual linear term κc0/T is observed in the T→0 limit when the current is along the c axis, revealing the presence of nodes in the gap. Because the nodes appear as x moves away from the concentration of maximal Tc, they must be accidental, not imposed by symmetry, and are therefore compatible with an s± state, for example. The fact that the in-plane residual linear term κa0/T is negligible at all x implies that the nodes are located in regions of the Fermi surface that contribute strongly to c-axis conduction and very little to in-plane conduction. Application of a moderate magnetic field (e.g., Hc2/4) excites quasiparticles that conduct heat along the a axis just as well as the nodal quasiparticles conduct along the c axis. This shows that the gap must be very small (but nonzero) in regions of the Fermi surface which contribute significantly to in-plane conduction. These findings can be understood in terms of a strong k dependence of the gap Δ(k) which produces nodes on a Fermi-surface sheet with pronounced c-axis dispersion and deep minima on the remaining, quasi-two-dimensional sheets

    Evidence for nodeless superconducting gap in NaFe1−x_{1-x}Cox_xAs from low-temperature thermal conductivity measurements

    Full text link
    The thermal conductivity of optimally doped NaFe0.972_{0.972}Co0.028_{0.028}As (Tc∼T_c \sim 20 K) and overdoped NaFe0.925_{0.925}Co0.075_{0.075}As (Tc∼T_c \sim 11 K) single crystals were measured down to 50 mK. No residual linear term κ0/T\kappa_0/T is found in zero magnetic field for both compounds, which is an evidence for nodeless superconducting gap. Applying field up to HH = 9 T (≈Hc2/4\approx H_{c2}/4) does not noticeably increase κ0/T\kappa_0/T in NaFe1.972_{1.972}Co0.028_{0.028}As, which is consistent with multiple isotropic gaps with similar magnitudes. The κ0/T\kappa_0/T of overdoped NaFe1.925_{1.925}Co0.075_{0.075}As shows a relatively faster field dependence, indicating the increase of the ratio between the magnitudes of different gaps, or the enhancement of gap anisotropy upon increasing doping.Comment: 5 pages, 4 figure
    corecore