2 research outputs found

    "Gauging" the Fluid

    Full text link
    A consistent framework has been put forward to quantize the isentropic, compressible and inviscid fluid model in the Hamiltonian framework, using the Clebsch parameterization. The naive quantization is hampered by the non-canonical (in particular field dependent) Poisson Bracket algebra. To overcome this problem, the Batalin-Tyutin \cite{12} quantization formalism is adopted in which the original system is converted to a local gauge theory and is embedded in a {\it canonical} extended phase space. In a different reduced phase space scheme \cite{vy} also the original model is converted to a gauge theory and subsequently the two distinct gauge invariant formulations of the fluid model are related explicitly. This strengthens the equivalence between the relativistic membrane (where a gauge invariance is manifest) and the fluid (where the gauge symmetry is hidden). Relativistic generalizations of the extended model is also touched upon.Comment: Version to appear in J.Phys. A: Mathematical and Genera
    corecore