48 research outputs found

    Aluminum Metasurface with Hybrid Multipolar Plasmons for 1000-Fold Broadband Visible Fluorescence Enhancement and Multiplexed Biosensing

    Get PDF
    Aluminum (Al)-based nanoantennae traditionally suffer from weak plasmonic performance in the visible range, necessitating the application of more expensive noble metal substrates for rapidly expanding biosensing opportunities. We introduce a metasurface comprising Al nanoantennae of nanodisks-in-cavities that generate hybrid multipolar lossless plasmonic modes to strongly enhance local electromagnetic fields and increase the coupled emitterā€™s local density of states throughout the visible regime. This results in highly efficient electromagnetic field confinement in visible wavelengths by these nanoantennae, favoring real-world plasmonic applications of Al over other noble metals. Additionally, we demonstrate spontaneous localization and concentration of target molecules at metasurface hotspots, leading to further improved on-chip detection sensitivity and a broadband fluorescence-enhancement factor above 1000 for visible wavelengths with respect to glass chips commonly used in bioassays. Using the metasurface and a multiplexing technique involving three visible wavelengths, we successfully detected three biomarkers, insulin, vascular endothelial growth factor, and thrombin relevant to diabetes, ocular and cardiovascular diseases, respectively, in a single 10 Ī¼L droplet containing only 1 fmol of each biomarker

    Aluminum Metasurface with Hybrid Multipolar Plasmons for 1000-Fold Broadband Visible Fluorescence Enhancement and Multiplexed Biosensing

    Get PDF
    Aluminum (Al)-based nanoantennae traditionally suffer from weak plasmonic performance in the visible range, necessitating the application of more expensive noble metal substrates for rapidly expanding biosensing opportunities. We introduce a metasurface comprising Al nanoantennae of nanodisks-in-cavities that generate hybrid multipolar lossless plasmonic modes to strongly enhance local electromagnetic fields and increase the coupled emitterā€™s local density of states throughout the visible regime. This results in highly efficient electromagnetic field confinement in visible wavelengths by these nanoantennae, favoring real-world plasmonic applications of Al over other noble metals. Additionally, we demonstrate spontaneous localization and concentration of target molecules at metasurface hotspots, leading to further improved on-chip detection sensitivity and a broadband fluorescence-enhancement factor above 1000 for visible wavelengths with respect to glass chips commonly used in bioassays. Using the metasurface and a multiplexing technique involving three visible wavelengths, we successfully detected three biomarkers, insulin, vascular endothelial growth factor, and thrombin relevant to diabetes, ocular and cardiovascular diseases, respectively, in a single 10 Ī¼L droplet containing only 1 fmol of each biomarker

    Overcoming evanescent field decay using 3D-tapered nanocavities for on-chip targeted molecular analysis

    Get PDF
    Enhancement of optical emission on plasmonic nanostructures is intrinsically limited by the distance between the emitter and nanostructure surface, owing to a tightly-confined and exponentially-decaying electromagnetic field. This fundamental limitation prevents efficient application of plasmonic fluorescence enhancement for diversely-sized molecular assemblies. We demonstrate a three-dimensionally-tapered gap plasmon nanocavity that overcomes this fundamental limitation through near-homogeneous yet powerful volumetric confinement of electromagnetic field inside an open-access nanotip. The 3D-tapered device provides fluorescence enhancement factors close to 2200 uniformly for various molecular assemblies ranging from few angstroms to 20 nanometers in size. Furthermore, our nanostructure allows detection of low concentration (10 pM) biomarkers as well as specific capture of single antibody molecules at the nanocavity tip for high resolution molecular binding analysis. Overcoming molecule position-derived large variations in plasmonic enhancement can propel widespread application of this technique for sensitive detection and analysis of complex molecular assemblies at or near single molecule resolution

    High-performance flexible metal-on-silicon thermocouple

    Get PDF
    We have demonstrated metal-on-silicon thermocouples with a noticeably high Seebeck coefficient and an excellent temperature-sensing resolution. Fabrication of the thermocouples involved only simple photolithography and metal-liftoff procedures on a silicon substrate. The experimentally measured Seebeck coefficient of our thermocouple was 9.17ā€‰Ć—ā€‰10^(āˆ’4)ā€‰V/Ā°K, which is 30 times larger than those reported for standard metal thin-film thermocouples and comparable to the values of alloy-based thin-film thermocouples that require sophisticated and costly fabrication processes. The temperature-voltage measurements between 20 to 80ā€‰Ā°C were highly linear with a linearity coefficient of 1, and the experimentally demonstrated temperature-sensing resolution was 0.01 Ā°K which could be further improved up to a theoretical limit of 0.00055 Ā°K. Finally, we applied this approach to demonstrate a flexible metal-on-silicon thermocouple with enhanced thermal sensitivity. The outstanding performance of our thermocouple combined with an extremely thin profile, bending flexibility, and simple, highly-compatible fabrication will proliferate its use in diverse applications such as micro-/nanoscale biometrics, energy management, and nanoscale thermography

    Enhanced broadband fluorescence detection of nucleic acids using multipolar gap-plasmons on biomimetic Au metasurfaces

    Get PDF
    Recent studies on metalā€“insulatorā€“metal-based plasmonic antennas have shown that emitters could couple with higher-order gap-plasmon modes in sub-10-nm gaps to overcome quenching. However, these gaps are often physically inaccessible for functionalization and are not scalably manufacturable. Here, using a simple biomimetic batch-fabrication, a plasmonic metasurface is created consisting of closely-coupled nanodisks and nanoholes in a metalā€“insulatorā€“metal arrangement. The quadrupolar mode of this system exhibits strong broadband resonance in the visible-near-infrared regime with minimal absorptive losses and effectively supresses quenching, making it highly suitable for broadband plasmon-enhanced fluorescence. Functionalizing the accessible insulator nanogap, analytes are selectively immobilized onto the plasmonic hotspot enabling highly-localized detection. Sensing the streptavidinā€“biotin complex, a 91-, 288-, 403- and 501-fold fluorescence enhancement is observed for Alexa Fluor 555, 647, 750 and 790, respectively. Finally, the detection of single-stranded DNA (gag, CD4 and CCR5) analogues of genes studied in the pathogenesis of HIV-1 between 10 pMā€“10 Ī¼M concentrations and then CD4 mRNA in the lysate of transiently-transfected cells with a 5.4-fold increase in fluorescence intensity relative to an untransfected control is demonstrated. This outcome promises the use of biomimetic Au metasurfaces as platforms for robust detection of low-abundance nucleic acids

    Photoluminescence Properties of Two Closely Related Isostructural Series Based on Anderson-Evans Cluster Coordinated With Lanthanides [Ln(H2O)7{X(OH)6Mo6O18}]ā€¢yH2O, X = Al, Cr

    Get PDF
    The paper describes synthesis and structural characterization of the whole series of two closely related lanthanide coordinated chromium or aluminum hexamolybdates (Anderson-Evans cluster) including twelve new members hitherto unreported: [Ln(H2O)7{X(OH)6Mo6O18}]Ā·4H2O and [Ln(H2O)7{X(OH)6Mo6O18}Ln(H2O)7]{X(OH)6Mo6O18}Ā·16H2O where X = Al or Cr and Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y. Crystal structures of all the solids were established by powder and single crystal X-ray diffraction techniques. The two series are dictated by a different aggregation of the same set of molecular species: Lighter lanthanides favor coordination interaction between lanthanide ions and molybdate cluster forming 1D chains (Series I) while the heavier lanthanides result in the stacking of a cation, a pair of lanthanide hydrates coordinating to the cluster, and an anion, the discrete cluster is further stabilized through a large number of water molecules (Series II). Crystallization with Er3+ and Tm3+ ions results in a concomitant mixture of Series I and II. Photoluminescence of single crystals of all the chromium molybdates was dominated by a ruby-like emission including those which contain optically active ions Pr, Sm, Eu, Tb, Dy, and Tm. In contrast, aluminum analogs showed photoluminescence corresponding to characteristic lanthanide emissions. Our results strongly suggest a possible energy transfer from f levels of lanthanide ions to d levels of chromium (III) causing the quenching of lanthanide emission when coordinated with chromium molybdates. Intensity measurements showed that the emission from chromium molybdates are almost two orders of magnitude lower than naturally occurring ruby with broader line widths at room temperature

    Integration of text mining and biological network analysis: Identification of essential genes in sulfate-reducing bacteria

    Get PDF
    The growth and survival of an organism in a particular environment is highly depends on the certain indispensable genes, termed as essential genes. Sulfate-reducing bacteria (SRB) are obligate anaerobes which thrives on sulfate reduction for its energy requirements. The present study used Oleidesulfovibrio alaskensis G20 (OA G20) as a model SRB to categorize the essential genes based on their key metabolic pathways. Herein, we reported a feedback loop framework for gene of interest discovery, from bio-problem to gene set of interest, leveraging expert annotation with computational prediction. Defined bio-problem was applied to retrieve the genes of SRB from literature databases (PubMed, and PubMed Central) and annotated them to the genome of OA G20. Retrieved gene list was further used to enrich proteinā€“protein interaction and was corroborated to the pangenome analysis, to categorize the enriched gene sets and the respective pathways under essential and non-essential. Interestingly, the sat gene (dde_2265) from the sulfur metabolism was the bridging gene between all the enriched pathways. Gene clusters involved in essential pathways were linked with the genes from seleno-compound metabolism, amino acid metabolism, secondary metabolite synthesis, and cofactor biosynthesis. Furthermore, pangenome analysis demonstrated the gene distribution, where 69.83% of the 116 enriched genes were mapped under ā€œpersistent,ā€ inferring the essentiality of these genes. Likewise, 21.55% of the enriched genes, which involves specially the formate dehydrogenases and metallic hydrogenases, appeared under ā€œshell.ā€ Our methodology suggested that semi-automated text mining and network analysis may play a crucial role in deciphering the previously unexplored genes and key mechanisms which can help to generate a baseline prior to perform any experimental studies
    corecore