9 research outputs found

    Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis

    Get PDF
    Histone demethylase PHF8 is upregulated and plays oncogenic roles in various cancers; however, the mechanisms underlying its dysregulation and functions in carcinogenesis remain obscure. Here, we report the novel functions of PHF8 in EMT (epithelial to mesenchymal transition) and breast cancer development. Genome-wide gene expression analysis revealed that PHF8 overexpression induces an EMT-like process, including the upregulation of SNAI1 and ZEB1. PHF8 demethylates H3K9me1, H3K9me2 and sustains H3K4me3 to prime the transcriptional activation of SNAI1 by TGF-β signaling. We show that PHF8 is upregulated and positively correlated with MYC at protein levels in breast cancer. MYC post-transcriptionally regulates the expression of PHF8 via the repression of microRNAs. Specifically, miR-22 directly targets and inhibits PHF8 expression, and mediates the regulation of PHF8 by MYC and TGF-β signaling. This novel MYC/microRNAs/PHF8 regulatory axis thus places PHF8 as an important downstream effector of MYC. Indeed, PHF8 contributes to MYC-induced cell proliferation and the expression of EMT-related genes. We also report that PHF8 plays important roles in breast cancer cell migration and tumor growth. These oncogenic functions of PHF8 in breast cancer confer its candidacy as a promising therapeutic target for this disease

    RABL6A Regulates Schwann Cell Senescence in an RB1-Dependent Manner

    No full text
    Schwann cells are normally quiescent, myelinating glia cells of the peripheral nervous system. Their aberrant proliferation and transformation underlie the development of benign tumors (neurofibromas) as well as deadly malignant peripheral nerve sheath tumors (MPNSTs). We discovered a new driver of MPNSTs, an oncogenic GTPase named RABL6A, that functions in part by inhibiting the RB1 tumor suppressor. RB1 is a key mediator of cellular senescence, a permanent withdrawal from the cell cycle that protects against cell immortalization and transformation. Based on the RABL6A-RB1 link in MPNSTs, we explored the hypothesis that RABL6A promotes Schwann cell proliferation and abrogates their senescence by inhibiting RB1. Using sequentially passaged normal human Schwann cells (NHSCs), we found that the induction of replicative senescence was associated with reduced expression of endogenous RABL6A. Silencing RABL6A in low passage NHSCs caused premature stress-induced senescence, which was largely rescued by co-depletion of RB1. Consistent with those findings, Rabl6-deficient MEFs displayed impaired proliferation and accelerated senescence compared to wildtype MEFs. These results demonstrate that RABL6A is required for maintenance of proper Schwann cell proliferation and imply that aberrantly high RABL6A expression may facilitate malignant transformation

    Combination of Proteasome and Histone Deacetylase Inhibitors Overcomes the Impact of Gain-of-Function p53 Mutations

    No full text
    Mutations in the “guardian of the genome” TP53 predominate in solid tumors. In addition to loss of tumor suppressor activity, a specific subset of missense mutations confers additional oncogenic properties. These “gain-of-function” (GOF) mutations portend poor prognosis across cancer types regardless of treatment. Our objective in this study was to identify novel therapeutic opportunities to overcome the deleterious effects of GOF TP53 mutants. Using gynecologic cancer cell lines with known TP53 mutational status, we established that treatment with a proteasome inhibitor induced cell death in cells with two recurrent GOF TP53 mutations (R175H and R248Q), and addition of a histone deacetylase inhibitor (HDACi) enhanced this effect. By contrast, p53-null cancer cells were relatively resistant to the combination. Proteasome inhibition promoted apoptosis of cells with TP53 GOF mutations, potentially through induction of the unfolded protein response. In line with the reported hyperstabilization of GOF p53 protein, cells treated with HDACi exhibited reduced levels of p53 protein. Together, these data form the basis for future clinical studies examining therapeutic efficacy in a preselected patient population with GOF TP53 mutations

    RABL6A Promotes Pancreatic Neuroendocrine Tumor Angiogenesis and Progression In Vivo

    No full text
    Pancreatic neuroendocrine tumors (pNETs) are difficult-to-treat neoplasms whose incidence is rising. Greater understanding of pNET pathogenesis is needed to identify new biomarkers and targets for improved therapy. RABL6A, a novel oncogenic GTPase, is highly expressed in patient pNETs and required for pNET cell proliferation and survival in vitro. Here, we investigated the role of RABL6A in pNET progression in vivo using a well-established model of the disease. RIP-Tag2 (RT2) mice develop functional pNETs (insulinomas) due to SV40 large T-antigen expression in pancreatic islet β cells. RABL6A loss in RT2 mice significantly delayed pancreatic tumor formation, reduced tumor angiogenesis and mitoses, and extended survival. Those effects correlated with upregulation of anti-angiogenic p19ARF and downregulation of proangiogenic c-Myc in RABL6A-deficient islets and tumors. Our findings demonstrate that RABL6A is a bona fide oncogenic driver of pNET angiogenesis and development in vivo

    A porcine model of neurofibromatosis type 1 that mimics the human disease

    No full text
    Loss of the NF1 tumor suppressor gene causes the autosomal dominant condition, neurofibromatosis type 1 (NF1). Children and adults with NF1 suffer from pathologies including benign and malignant tumors to cognitive deficits, seizures, growth abnormalities, and peripheral neuropathies. NF1 encodes neurofibromin, a Ras-GTPase activating protein, and NF1 mutations result in hyperactivated Ras signaling in patients. Existing NF1 mutant mice mimic individual aspects of NF1, but none comprehensively models the disease. We describe a potentially novel Yucatan miniswine model bearing a heterozygotic mutation in NF1 (exon 42 deletion) orthologous to a mutation found in NF1 patients. NF1(+/ex42del) miniswine phenocopy the wide range of manifestations seen in NF1 patients, including cafe au lait spots, neurofibromas, axillary freckling, and neurological defects in learning and memory. Molecular analyses verified reduced neurofibromin expression in swine NF1(+/ex42del) fibroblasts, as well as hyperactivation of Ras, as measured by increased expression of its downstream effectors, phosphorylated ERK1/2, SIAH, and the checkpoint regulators p53 and p21. Consistent with altered pain signaling in NF1, dysregulation of calcium and sodium channels was observed in dorsal root ganglia expressing mutant NF1. Thus, these NF1(+/ex42del) miniswine recapitulate the disease and provide a unique, much-needed tool to advance the study and treatment of NF1.Synodos for NF1 program at the Children's Tumor Foundation; Children's Tumor Foundation [2015-04-009A]; NIH [R01NS082283, 1R01NS098772, 1R01DA042852]; US Department of Defense Congressionally Directed Military Medical Research and Development Program [NF1000099]; NCI [P30-CA086862]; NIH shared instrumentation award [1S10OD02502501]; Pharmacological Sciences Training grant [2T32-GM0677954-14]; Children's Tumor FoundationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore