2 research outputs found

    Pharmacological Evaluation of Secondary Metabolites and Their Simultaneous Determination in the Arabian Medicinal Plant Plicosepalus curviflorus Using HPTLC Validated Method

    Get PDF
    © The Author(s) 2019. The present study aimed to identify biologically active secondary metabolites from the rare plant species, Pulsatilla patens subsp. patens and the cultivated P. vulgaris subsp. vulgaris. Chromatographic fractionation of the ethanolic extract of the roots of P. patens subsp. patens resulted in the isolation of two oleanane-type glycosides identified as hederagenin 3-O-β-d-glucopyranoside (2.7 mg) and hederagenin 3-O-β-d-galactopyranosyl-(1→2)-β-d-glucopyranoside (3.3 mg, patensin). HPLC analysis of the methanolic extract of the crude root of P. patens subsp. patens and P. vulgaris subsp. vulgaris revealed the presence of Pulsatilla saponin D (hederagenin 3-O-α-l-rhamnopyranosyl(1→2)-[β-d-glucopyranosyl(1→4)]-α-l-arabinopyranoside). Chromatographic analysis using GC-MS of the silylated methanolic extracts from the leaves and roots of these species identified the presence of carboxylic acids, such as benzoic, caffeic, malic, and succinic acids. The extracts from Pulsatilla species were tested for their antifungal, antimicrobial, and antimalarial activities, and cytotoxicity to mammalian cell lines. Both P. patens subsp. patens and P. vulgaris subsp. vulgaris were active against the fungus Candida glabrata with the half-maximal inhibitory concentration (IC 50 ) values of 9.37 µg/mL and 11 µg/mL, respectively. The IC 50 values for cytotoxicity evaluation were in the range of 32–38 μg/mL for P. patens subsp. patens and 35–57 μg/mL for P. vulgaris subsp. vulgaris for each cell line, indicating general cytotoxic activity throughout the panel of evaluated cancer and noncancer cells

    Quantitative proteomics analysis of COVID-19 patients: Fetuin-A and tetranectin as potential modulators of innate immune responses

    No full text
    Treatment of severe cases of coronavirus disease 2019 (COVID-19) is extremely important to minimize death and end-organ damage. Here we performed a proteomic analysis of plasma samples from mild, moderate and severe COVID-19 patients. Analysis revealed differentially expressed proteins and different therapeutic potential targets related to innate immune responses such as fetuin-A, tetranectin (TN) and paraoxonase-1 (PON1). Furthermore, protein changes in plasma showed dysregulation of complement and coagulation cascades in COVID-19 patients compared to healthy controls. In conclusion, our proteomics data suggested fetuin-A and TN as potential targets that might be used for diagnosis as well as signatures for a better understanding of the pathogenesis of COVID-19 disease
    corecore